Recall that an undirected graph \(G \) is defined as an ordered pair \((V, E)\) where \(V \) is a finite non-empty set, and \(E \subseteq V^{(2)} \) is a set edges (two-element subsets of \(V \)). A directed graph is defined similarly where the edge set \(E \) is a subset of \(V \times V \setminus \{(v, v) \mid v \in V\} \). The elements of \(V \) are the vertices of \(G \), and the elements of \(E \) are the edges of \(G \). It is convention to refer to \(|V|\) as \(n \) and \(|E|\) as \(m \).

A directed graph \(G \) is defined as an ordered pair \((V, E)\) where \(V \) is a finite non-empty set, and \(E \subseteq V \times V \) is a set of length-two sequences of elements of \(V \). In this class, we further restrict \(E \) not to have elements of the form \((v, v)\) for any \(v \in V \) (no self-loops). The elements of \(V \) are the vertices of \(G \), and the elements of \(E \) are the edges of \(G \). It is convention to refer to \(|V|\) as \(n \) and \(|E|\) as \(m \).

1. Prove that an undirected graph \(G = (V, E) \) is a tree if and only if there exists a unique path between every pair of distinct vertices in \(G \).

Solution: First we prove that an undirected graph \(G \) is acyclic if and only if there is at most one path between every pair of distinct vertices in \(G \).

- \((\Leftarrow)\) We prove this implication by proving its contrapositive: if an undirected graph \(G \) contains a cycle (\(G \) is not acyclic), there is some pair of distinct vertices in \(G \) such that there is more than one distinct path between them. To see this, let \(G \) be any undirected graph \(G \) that contains a cycle, and consider two vertices of a cycle in \(G \). Clearly there are two distinct paths between these vertices as given by the edges of that cycle.

- \((\Rightarrow)\) We prove this implication by proving its contrapositive which we prove by smallest counterexample (WOP): for any undirected graph \(G \), if there are at least two distinct paths between a pair of vertices in \(G \), then \(G \) contains a cycle. For sake of contradiction, let \(G \) be an undirected graph with two distinct paths \(P_1 \) and \(P_2 \) between two distinct vertices \(u \) and \(v \) where the number of edges in \(G \) is minimized. If the paths \(P_1 \) and \(P_2 \) only share vertices \(u \) and \(v \), i.e. they are interior-disjoint, then \(P_1 \) concatenated with \(P_2 \) is a cycle, a contradiction.

Henceforth, we assume \(P_1 \) and \(P_2 \) are not interior-disjoint, so they share a vertex \(x \) that is neither \(u \) or \(v \). Let \(P_1^u \) and \(P_1^v \) be the (sub)paths between \(u \) and \(x \) and between \(x \) and \(v \) contained in \(P_1 \), respectively, and let \(P_2^u \) and \(P_2^v \) be the (sub)paths between \(u \) and \(x \) and between \(x \) and \(v \) contained in \(P_2 \), respectively. Note that all of these subpaths must contain at least one edge. There are two cases to consider.

- If \(P_1^u \) and \(P_2^v \) are not equivalent, the subgraph \(G' \) obtained by removing the edges of \(P_2^u \) and \(P_2^v \) from \(G \) has less than \(m \) edges and contains two distinct paths between \(x \) and \(v \), namely \(P_1^v \) and \(P_2^v \), which contradicts the choice of \(G \).

- Otherwise, since \(P_1 \) and \(P_2 \) are not equivalent, it must be that \(P_1^u \) and \(P_2^u \) are not equivalent. Similar to the above, the subgraph \(G' \) obtained by removing the edges of \(P_1^u = P_2^u \) from \(G \) has less than \(m \) edges and contains two distinct paths between \(x \) and \(v \), namely \(P_1^v \) and \(P_2^v \). Again, this contradicts the choice of \(G \).

In either case, a contradiction is reached, so no such \(G \) exists and the claim holds.

With the fact above it is easy to finish the proof. From lecture, we know an undirected graph \(G \) is connected if and only if there is at least one path between every pair of vertices.
Thus, it follows from the above that any undirected graph G is both connected and acyclic if and only if it has both ≥ 1 path and ≤ 1 path between every pair of vertices, which is to say there is exactly 1 (unique) path between every pair of vertices. Finally, since we also know an undirected graph is a tree if and only if it is connected and acyclic, we are done by a chain of equivalences.

2. Prove that for any finite partial order R on a finite set A, there exists a chain decomposition of R on A of size at most the size of the longest antichain in R. (This is one direction of Dilworth’s theorem; we previously argued the converse in lecture.)

Solution: Before we begin, we note that the following is a (less concise) proof adapted from one found online here. In recitation, we phrased the proof in terms of reachability in DAGs, specifically Hasse diagrams.

We will give a proof by induction on the size of the set A. Let R be a finite strict partial order on a non-empty finite set A (the claim holds vacuously for empty A), and let n be the number of pairs in R.

Consider the case where R is empty, i.e. $n = 0$. This case is trivial since all pairs of distinct elements are incomparable, and thus the largest antichain is A itself while there is chain decomposition of the same size where each element of A is placed in its own set. Thus, in this case, the claim holds.

Henceforth, we assume R is non-empty (and thus A is non-empty). Assume that the claim holds for all strict partial orders on any set with less than n pairs. Let $s \in A$ be an element where $\neg aRs$ for all $a \in A$ and there exists $b \in A$ such that sRb; it can be easily proven such an s always exists. Let $t \in A$ be an element where sRt and $\neg tRa$ for all $a \in A$; again, it can be easily proven such a t must exist. Clearly $C = \{s, t\}$ is a chain since sRt.

Now consider the set $A' = A \setminus C$ and relation $R' = R \cap (A' \times A')$; in other words, let R' be the relation obtained by removing all pairs containing s or t from R. Note that R' is a strict partial order on set A' by the choices of s and t. Let T' be an antichain of R' on A'. Since $|R'| < |R|$, there exists a chain decomposition CD' of R' on A' where $|CD'| \leq |T'|$ by the induction hypothesis. This immediately implies a chain decomposition $CD' \cup \{C\}$ of R on A since C is a chain and the only elements of A not in any chains of CD are exactly s and t. Now let T be a longest antichain of R. There are two cases.

- If $|T'| < |T|$, we have $|CD \cup \{C\}| = |T'| + 1 \leq |T|$, so we are done. Indeed, $CD \cup \{C\}$ is a chain decomposition of R on A of size at most $|T|$ where T is a longest antichain of R on A.
- Otherwise, $|T'| \geq |T|$. In this case, the argument of the previous case does not work; we already have at least $|T|$ chains in CD' before adding C, so we have to find different chains. To do this, we will (roughly speaking) “split” the set A and relation R into two parts, obtain chain decompositions on each part by the induction hypothesis, then “sew” these together to obtain a single chain decomposition of R on A of the right size, specifically of size $|T|$.

 First, we observe that, since any antichain of R' on A' is an antichain of R on A, we have $|T'| \leq |T|$. We already have $|T'| \geq |T|$ in this case, so $|T'| = |T|$. Thus, T' is a
longest antichain of R on A. Now consider the following sets and relations:

$$A^- = \{ a \in A \mid \exists t \in T'.aRt \}, \quad R^- = R \cap (A^- \times A^-)$$
$$A^+ = \{ a \in A \mid \exists t \in T'.tRa \}, \quad R^+ = R \cap (A^+ \times A^+)$$

In other words, A^- is the set of all elements related to any element of T', and R^- is the subset of pairs of R where both elements are in A^-. A^+ and R^+ are defined similarly.

Before we proceed, let us observe some properties of these sets and relations:

(a) $A^- \cap A^+ = T'$. To see this, suppose for sake of contradiction there is an element $a \in A \setminus T'$ in both A^+ and A^-. Then there would be elements $x, y \in T'$ such that xRa and aRy by the definitions of A^+ and A^-, but then xRy by the transitivity of R, which contradicts that T' is an antichain of R on A.

(b) $A^- \cup A^+ = A$. Indeed, if there was an element $a \in A \setminus T'$ in neither A^- nor A^+, then $T' \cup \{a\}$ would be a larger antichain of R on A which is a contradiction.

(c) $|R^-| < |R|$ and $|R^+| < |R|$ since $s \notin A^+$ and $t \notin A^-$.

(d) T' is a longest antichain of both R^- on A^- and R^+ on A^+; T' is contained in both sets by the first point above, and it is longest since no antichain of these relations can be larger than a longest antichain in R on A such as T' itself.

Together, points (c) and (d) above with the induction hypothesis implies there exists chain decompositions CD^- of R^- on A^- and CD^+ of R^+ on A^+ where $|CD^-|, |CD^+| \leq |T'|$. Now note that every chain in CD^- and CD^+ contains exactly one element of T', otherwise there would be a chain with two elements of T' which contradicts that T' is an antichain. Furthermore, this implies $|CD^-|, |CD^+| \geq |T'|$, so now we have $|CD^-| = |CD^+| = |T'|$ where every chain in these decompositions contains exactly one element of T'.

Finally, for each $x \in T'$, define C^-_x to be the chain in CD^- that contains x, and define C^+_x similarly. These are the chains that we “sew” together. Note that $C^-_x \cup C^+_x$ is a chain of R on A by the transitivity of R and definitions of A^- and A^+, so $\{C^-_x \cup C^+_x \mid x \in T'\}$ is a chain decomposition of R on A of size $|T|$ as desired.

3. A tournament graph is a directed graph where exactly one of (u, v) or (v, u) is in E for every pair of distinct vertices $u, v \in V$. A champion of the graph is a vertex from which every other vertex is reachable by a path of length at most two from the champion. That is, every other vertex is an out-neighbor of the champion, or it is the out-neighbor of an out-neighbor of the champion. Prove that any vertex in G with largest out-degree is a champion.

Solution: Suppose for sake of contradiction a vertex u with maximum out-degree is not a champion, and let X be the set of out-neighbors of u. Since u is not a champion, there is some vertex v that u cannot reach via paths of length at most two; in particular, v is not in X, and v is not an out-neighbor of any vertex in X. In other words, $(x, v) \notin E$ for every $x \in X \cup \{u\}$. Since G is a tournament graph, we have $(v, x) \in E$ for every $x \in X \cup \{u\}$. It follows that the out-degree of v is at least one more than $|X|$, the out-degree of u, which is a contradiction.