- vertices and edges
 - n: # of vertices
 - m: # of edges
 - Often: in a graph, the same edge only appears at most once. In this case $m \leq n^2$. Vertices in a graph are connected. In this case $m \geq n - 1$.

- Representing graphs
 - Adjacency array

 $O(n^2)$ space, can check (i, j) is an edge $O(1)$

 Enumerate edges adjacent to a vertex $O(n)$

 Better for dense graphs when $m = \Theta(n^2)$

 - Adjacency list

 $O(n + m)$, check if (i, j) is an edge $O(\text{degree}(i))$

 Enumerate edges adjacent to i $O(\text{degree}(i))$

- Definition: degree of a vertex, $\text{degree}(i)$ is the number of edges that is adjacent to i.

 (Directed) in-degree of a vertex, $\text{in-deg}(i)$ is # incoming edges

 Out-degree of a vertex, $\text{out-deg}(i)$ is # outgoing edges.

- Claim: For an undirected graph, $\sum_{i \in V} \text{degree}(i) = 2m$.

 $\sum_{i \in V} \text{degree}(i) = 2m$.
if the graph is sparse \(m = \Theta(n) \)

\[
\text{average degree} \quad \frac{\sum \text{degree}(i)}{n} = \frac{2m}{n} = \Theta(1).
\]

- DFS

\[
\text{DFS_visit (1)} \rightarrow \text{DFS_visit (2)} \rightarrow \text{DFS_visit (3)} \rightarrow \text{DFS_visit (4)} \rightarrow \text{DFS_visit (5)}
\]

- DFS tree

- DFS tree is not unique

 can choose different starting points and/or the ordering of edges

 decide to follow

 (1,3) before (1,2)

 (1,4) first.

 Cannot be a DFS tree if 1 is the root (starting point)

- pre-order and post-order
- **Pre-order and post-order**

```
- Pre-order: 1 2 4 3 6
- Post-order: 3 4 6 2 1
```

- Pre-order: orderly that draw the vertices.
- Post-order: orderly in which the subtrees are finished.