- Huffman tree
 - Prefix encoding vs. binary tree

Claim: if all characters are leaf nodes in a tree, then the encoding is prefix free (and vice versa)

Claim: all prefix-free encodings allow unique decoding.

Decoding: (input: binary string of length)
- Start from root of the tree
- For i = 1 to l
 - Follow the edge labeled by a[i]
 - If we have reached a leaf
 - Output the corresponding character
 - Return to root

- Construct a tree by making a sequence of decisions
- Initial: n nodes that are leaves
- Every step: Pick 2 nodes and "merge" them

- Cost of merging: total frequency of the two merged nodes

- Running time
 - Naive implementation
naive implementation

\(n - 1 \) iteration (every iteration reduces \#char. by 1)

\(O(n) \) for each iteration

\(O(n^2) \)

use priority queue / heap

- support: finding min element, add, delete \(O(\log n) \)

\(O(n \log n) \)

- Proof of correctness:

we use induction.

Induction Hypothesis: Huffman Tree algorithm finds an optimal encoding for all alphabets of size at most \(N \).

Base Case: when \(N = 1 \), there is only one solution with cost 0.

Induction Step: Assume IH is true for \(N \), consider an alphabet of size \(N + 1 \).

assume towards contradiction that Huffman Tree algorithm does not find the optimal solution. Let \(T_{ALG} \) be the tree found by algorithm

\(T_{OPT} \) be the tree found by OPT, and \(i, j \) be the first two characters that the algorithm merged.

if \(i, j \) are not children of the same node in \(T_{OPT} \)

let \(i', j' \) be two nodes at the highest depth in \(T_{OPT} \) that share the same parent (note: one of \(i', j' \) may overlap with one of \(i, j \)).

let \(T'_{OPT} \) be a solution where \(i, j \) are swapped with \(i', j' \) in \(T_{OPT} \).

let \(d_i \) be depth of \(i \) in \(T_{OPT} \) (similarly for \(d_j, d_i', d_j' \)); we have

\[
\text{Cost}(T'_{OPT}) = \text{Cost}(T_{OPT}) - (W_i \cdot d_i + W_j \cdot d_j + W_i \cdot d_i' + W_j \cdot d_j' + W_i \cdot d_i + W_j \cdot d_j)
\]

\[
= \text{Cost}(T_{OPT}) - (W_i - W_i)(d_i - d_i') - (W_j - W_j)(d_j - d_j')
\]

\[
\leq \text{Cost}(T_{OPT})
\]

here the last inequality is because \(W_i < W_i', W_j < W_j' \) (ALG has chosen two characters with lowest freq.)

\(d_i < d_i', d_j < d_j' \) (both \(i \) and \(j \) have highest depth)

therefore, \(T'_{OPT} \) is also an optimal solution.

now we know there is always an optimal solution that merges \(i \) and \(j \).

the problem reduces to an alphabet of size \(n \).
Now we know there is always an optimal solution. The problem reduces to an alphabet of size \(n \).

By induction hypothesis, Huffman tree algorithm is optimal for this instance. Therefore, \(\text{cost}(T_{\text{acc}}) \leq \text{cost}(T_{\text{opt}}) \leq \text{cost}(T_{\text{opt}}) \), this contradicts with the assumption that \(T_{\text{acc}} \) is not optimal.

Now we know \(T_{\text{acc}} \) is always optimal even for alphabet of size \(n+1 \), this finishes the induction. \(\square \)