Section: LR Parsing

LR PARSING

LR(k) Parser

- bottom-up parser
- shift-reduce parser
- L means: reads input left to right
- R means: produces a rightmost derivation
- k - number of lookahead symbols

LR parsing process

- convert CFG to PDA
- Use the PDA and lookahead symbols
Convert CFG to PDA

The constructed NPDA:

- three states: s, q, f
 start in state s, assume z on stack
- all rewrite rules in state s, backwards
 rules pop rhs, then push lhs
 \((s,\text{lhs}) \in \delta(s,\lambda,\text{rhs})\)
 This is called a reduce operation.
- additional rules in s to recognize terminals
 For each \(x \in \Sigma, \ g \in \Gamma, \ (s,xg) \in \delta(s,x,g)\)
 This is called a shift operation.
- pop S from stack and move into state q
- pop z from stack, move into f, accept.
Example: Construct a PDA.

\[
S \rightarrow aSb \\
S \rightarrow b
\]
LR Parsing Actions

1. shift
 transfer the lookahead to the stack

2. reduce
 For X → w, replace w by X on the stack

3. accept
 input string is in language

4. error
 input string is not in language

LR(1) Parse Table

- Columns:
 terminals, $ and variables

- Rows:
 state numbers: represent patterns in a derivation
LR(1) Parse Table Example

1) \(S \rightarrow aSb \)
2) \(S \rightarrow b \)

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>$</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>s2</td>
<td>s3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>acc</td>
</tr>
<tr>
<td>2</td>
<td>s2</td>
<td>s3</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>r2</td>
<td>r2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>s5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>r1</td>
<td>r1</td>
<td></td>
</tr>
</tbody>
</table>

Definition of entries:

- \(sN \) - shift terminal and move to state \(N \)
- \(N \) - move to state \(N \)
- \(rN \) - reduce by rule number \(N \)
- \(\text{acc} \) - accept
- blank - error
state = 0
push(state)
read(symbol)
entry = T[state, symbol]
while entry.action ≠ accept do
 if entry.action == shift then
 push(symbol)
 state = entry.state
 push(state)
 read(symbol)
 else if entry.action == reduce then
 do 2*size_rhs times {pop()}
 state := top-of-stack()
 push(entry.rule.lhs)
 state = T[state, entry.rule.lhs]
 push(state)
 else if entry.action == blank then
 error
 entry = T[state, symbol]
end while
if symbol ≠ $ then error
Example:
Trace aabbb
To construct the LR(1) parse table:

- Construct a dfa to model the top of the stack
- Using the dfa, construct an LR(1) parse table

To Construct the DFA

- Add $S' \rightarrow S$
- place a marker “_” on the rhs
 $S' \rightarrow _S$
- Compute $\text{closure}(S' \rightarrow _S)$.
 Def. of closure:

 1. $\text{closure}(A \rightarrow v_xy) = \{A \rightarrow v_xy\}$
 if x is a terminal.
 2. $\text{closure}(A \rightarrow v_xy) = \{A \rightarrow v_xy\}$
 $\cup (\text{closure}(x \rightarrow _w)$ for all w if x is a variable.

8
• The closure \(S' \rightarrow _S\) is state 0 and “unprocessed”.

• Repeat until all states have been processed

 \[- \text{unproc} = \text{any unprocessed state}\]

 \[- \text{For each } x \text{ that appears in } A \rightarrow u _xv \text{ do}\]

 \[* \text{Add a transition labeled “}x\text{” from state “}unproc\text{” to a new state with production } A \rightarrow ux _v\]

 \[* \text{The set of productions for the new state are: closure}(A \rightarrow ux _v)\]

 \[* \text{If the new state is identical to another state, combine the states Otherwise, mark the new state as “}unprocessed\text{”}\]

• Identify final states.
Example: Construct DFA

(0) $S' \rightarrow S$
(1) $S \rightarrow aSb$
(2) $S \rightarrow b$

Transition diagram:

- $S \rightarrow S$
- $S \rightarrow aSb$
- $S \rightarrow b$

Input sequence: $aabbb$
Backtracking through the DFA

Consider aabbb

- Start in state 0.
- Shift “a” and move to state 2.
- Shift “a” and move to state 2.
- Shift “b” and move to state 3.
 Reduce by “S → b”
 Pop “b” and Backtrack to state 2.
 Shift “S” and move to state 4.
- Shift “b” and move to state 5.
 Reduce by “S → aSb”
 Pop “aSb” and Backtrack to state 2.
 Shift “S” and move to state 4.
- Shift “b” and move to state 5.
 Reduce by “S → aSb”
 Pop “aSb” and Backtrack to state 0.
Shift “S” and move to state 1.

• Accept. aabbb is in the language.
To construct LR(1) table from diagram:

1. If there is an arc from state1 to state2
 (a) arc labeled x is terminal or $\$
 $T[\text{state1}, x] = \text{sh} \ \text{state2}$
 (b) arc labeled X is nonterminal
 $T[\text{state1}, X] = \text{state2}$
2. If state1 is a final state with $X \rightarrow w$
 For all a in $\text{FOLLOW}(X)$,
 $T[\text{state1}, a] = \text{reduce by} \ X \rightarrow w$
3. If state1 is a final state with $S' \rightarrow S$
 $T[\text{state1}, \$] = \text{accept}$
4. All other entries are error
Example: LR(1) Parse Table

\[(0) \quad S' \rightarrow S\]
\[(1) \quad S \rightarrow aSb\]
\[(2) \quad S \rightarrow b\]

Here is the LR(1) Parse Table with extra information about the stack contents of each state.

<table>
<thead>
<tr>
<th>Stack contents</th>
<th>State number</th>
<th>Terminals</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>(empty)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a a x</td>
<td>2</td>
<td>s2</td>
<td>s3</td>
</tr>
<tr>
<td>a a x b + b</td>
<td>3</td>
<td>r2</td>
<td>r2</td>
</tr>
<tr>
<td>a a x S</td>
<td>4</td>
<td>s5</td>
<td></td>
</tr>
<tr>
<td>a a x S b</td>
<td>5</td>
<td>r1</td>
<td>r1</td>
</tr>
</tbody>
</table>
Actions for entries in LR(1) Parse table $T[\text{state}, \text{symbol}]$

Let entry $= T[\text{state}, \text{symbol}]$.

- If symbol is a terminal or $\$:
 - If entry is “shift statei”
 push lookahead and statei on the stack
 - If entry is “reduce by rule $X \rightarrow w$”
 pop w and k states (k is the size of w) from the stack.
 - If entry is “accept”
 Halt. The string is in the language.
 - If entry is “error”
 Halt. The string is not in the language.
• If symbol is nonterminal
 We have just reduced the rhs of a production \(X \rightarrow w \) to a symbol. The entry is a state number, call it state\(i \). Push \(T[\text{state}i, X] \) on the stack.
Constructing Parse Tables for CFG’s with λ-rules

$A \to \lambda$ written as $A \to \lambda__

Example

$S \to ddX$
$X \to aX$
$X \to \lambda$

Add a new start symbol and number the rules:

(0) $S' \to S$
(1) $S \to ddX$
(2) $X \to aX$
(3) $X \to \lambda$

Construct the DFA:
Construct the LR(1) Parse Table

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>d</th>
<th>$</th>
<th>S</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>$2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>$3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>$3</td>
</tr>
<tr>
<td>3</td>
<td>s2</td>
<td>r3</td>
<td>r3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>r1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>s5</td>
<td>r3</td>
<td>r3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>r2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Possible Conflicts:

1. Shift/Reduce Conflict
 Example:

 \[A \rightarrow ab \]
 \[A \rightarrow abcd \]

 In the DFA:

 \[A \rightarrow ab_ \]
 \[A \rightarrow ab_\ cd \]

2. Reduce/Reduce Conflict
 Example:

 \[A \rightarrow ab \]
 \[B \rightarrow ab \]

 In the DFA:

 \[A \rightarrow ab_ \]
 \[B \rightarrow ab_ \]

3. Shift/Shift Conflict

It is a DFA