Section: Finite Automata

Deterministic Finite Acceptor (or Automata)

A DFA = \((Q, \Sigma, \delta, q_0, F) \)

where

\(Q \) is finite set of states
\(\Sigma \) is tape (input) alphabet
\(q_0 \) is initial state
\(F \subseteq Q \) is set of final states.
\(\delta: Q \times \Sigma \rightarrow Q \)
Example: DFA that accepts even binary numbers.

Transition Diagram:

\[M = (Q, \Sigma, \delta, q_0, F) = \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>q0</td>
<td>q0</td>
</tr>
<tr>
<td>q1</td>
<td>q1</td>
<td>q0</td>
</tr>
</tbody>
</table>

Example of a move: \(\delta(q_0, 1) = q_0 \)
Algorithm for DFA:

Start in start state with input on tape
q = current state
s = current symbol on tape
while (s != blank) do
 q = δ(q, s)
 s = next symbol to the right on tape
if q ∈ F then accept

Example of a trace: 11010
Pictorial Example of a trace for 100:

1) 1 0 0
 q0
 q1

2) 1 0 0
 q0
 q1

3) 1 0 0
 q0
 q1

4) 1 0 0
 q0
 q1
Definition:
\[\delta^*(q, \lambda) = q \]
\[\delta^*(q, wa) = \delta(\delta^*(q, w), a) \]

Definition: The language accepted by a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) is set of all strings on \(\Sigma \) accepted by \(M \). Formally, \(L(M) = \{ w \in \Sigma^* | \delta^*(q_0, w) \in F \} \)
Trap State

Example: $L(M) = \{ b^a a^b | n > 0 \}$
Example:

\[L = \{ w \in \Sigma^* \mid w \text{ has an even number of a’s and an even number of b’s} \} \]
Example: DFA that accepts even binary numbers that have an even number of 1’s.
Definition A language is regular iff there exists DFA M s.t. \(L = L(M) \).
Chapter 2.2

Nondeterministic Finite Automata (or Accepter)

Definition

An NFA = \((Q, \Sigma, \delta, q_0, F)\)

where

- \(Q\) is finite set of states
- \(\Sigma\) is tape (input) alphabet
- \(q_0\) is initial state
- \(F \subseteq Q\) is set of final states.

\(\delta: Q \times (\Sigma \cup \{\lambda\}) \rightarrow 2^Q\)
Example

Note: In this example $\delta(q_0, a) = \delta(q_1, q_3)$

$L = \{aabb, abab, ab \} \cup \{a, b, \}$
Example

\[L = \{(ab)^n \mid n > 0\} \cup \{a^n b \mid n > 0\} \]
Definition \(q_j \in \delta^*(q_i, w) \) if and only if there is a walk from \(q_i \) to \(q_j \) labeled \(w \).

Example From previous example:

\[
\begin{align*}
\delta^*(q_0, ab) &= \{ q_1, q_5, q_0 \} \\
\delta^*(q_0, aba) &= \{ q_0 \}
\end{align*}
\]

Definition: For an NFA \(M \),

\[
L(M) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \cap F \neq \emptyset \}
\]
2.3 NFA vs. DFA: Which is more powerful?

Example:
Theorem
Given an NFA
$M_N = (Q_N, \Sigma, \delta_N, q_0, F_N)$, then there exists a DFA $M_D = (Q_D, \Sigma, \delta_D, q_0, F_D)$ such that $L(M_N) = L(M_D)$.

Proof:

We need to define M_D based on M_N.

$Q_D = 2^{Q_N}$

$F_D = \{ Q < Q_D \mid \exists q_i \in Q \text{ with } q_i \in F_N \}$

$\delta_D : Q_D \times \Sigma \rightarrow Q_D$
Algorithm to construct M_D

1. start state is $\{q_0\} \cup \text{closure}(q_0)$

2. While can add an edge
 (a) Choose a state $A = \{q_i, q_j, \ldots q_k\}$ with missing edge for $a \in \Sigma$
 (b) Compute $B = \delta^*(q_i, a) \cup \delta^*(q_j, a) \cup \ldots \cup \delta^*(q_k, a)$
 (c) Add state B if it doesn’t exist
 (d) add edge from A to B with label a

3. Identify final states

4. if $\lambda \in L(M_N)$ then make the start state final.
Example:
Properties and Proving - Problem 1

Consider the property
Replace_one_a_with_b or R1awb for short. If L is a regular, prove
R1awb(L) is regular.

The property R1awb applied to a
language L replaces one a in each
string with a b. If a string does not
have an a, then the string is not in
R1awb(L).

Example 1: Consider L={aaab, bbba}
R1awb(L)= {babab, abaab, aabb, bbaa, bbaa}

Example 2: Consider Σ = {a, b}, L =
{w ∈ Σ* | w has an even number of a’s
and an even number of b’s}
R1awb(L)= {w ∈ Σ* | w has an odd num
of a’s and an odd num of b’s.}

Proof:
If \(L \) is regular, prove \(R \text{laub}(L) \) is also regular.

Proof

Assume \(L \) is a regular language.

\(\exists \) DFA \(M \) s.t. \(L = L(M) \).

\(M = (Q, \Sigma, S, q_0, F) \)

Construct an NFA \(\hat{M} \) from \(M \) s.t. \(L(\hat{M}) = R \text{laub}(L) \)

Make a copy of \(M \) called \(M' = (Q', \Sigma, \delta', q_0', F') \)
See extra handout on how to write complete proof.
Properties and Proving - Problem 2

Consider the property
Truncate_all_preceeding_b’s or TruncPreb for short. If L is a regular, prove TruncPreb(L) is regular.

The property TruncPreb applied to a language L removes all preceeding b’s in each string. If a string does not have an preceeding b, then the string is the same in TruncPreb(L).

Example 1: Consider L={aaab, bbba}
TruncPreb(L)={aaab, bbba}

Example 2: Consider L =
{(bba)^n | n > 0}
TruncPreb(L)={a}\((bba)^n \) | n \geq 0

Proof:
Minimizing Number of states in DFA

Why?

Algorithm

• Identify states that are indistinguishable
 These states form a new state

Definition Two states p and q are indistinguishable if for all $w \in \Sigma^*$

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \in F \\
\delta^*(p, w) \not\in F \Rightarrow \delta^*(q, w) \not\in F
\]

Definition Two states p and q are distinguishable if $\exists w \in \Sigma^*$ s.t.

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \not\in F \quad \text{OR} \\
\delta^*(q, w) \not\in F \Rightarrow \delta^*(p, w) \in F
\]
Example:

ABDEFG

split on final states

BG is a group

F on an a goes to F
B on an a goes to B
D on an a goes to G

A on an a goes to A
B
C
D E F G

A
B
C
D E F G
Example: