Regular Expressions

Method to represent strings in a language

- union (or)
- concatenation (AND) (can omit)
- star-closure (repeat 0 or more times)

Example:

\[(a + b)^* \circ a \circ (a + b)^* = (a+b) a (a+b)^*\]

Strings over \(\Sigma\) that contain at least one a

Example:

\[(aa)^*\]

Strings just an even number of a's
Definition Given Σ,

1. $\emptyset, \lambda, a \in \Sigma$ are R.E.

2. If r and s are R.E. then
 - $r+s$ is R.E.
 - rs is R.E.
 - (r) is a R.E.
 - r^* is R.E.

3. r is a R.E. iff it can be derived from (1) with a finite number of applications of (2).
Definition: \(L(r) = \) language denoted by R.E. \(r \).

1. \(\emptyset, \{\lambda\}, \{a\} \) are \(L \) denoted by a R.E.

2. if \(r \) and \(s \) are R.E. then
 (a) \(L(r+s) = L(r) \cup L(s) \)
 (b) \(L(rs) = L(r) \circ L(s) \)
 (c) \(L((r)) = L(r) \)
 (d) \(L((r)^*) = (L(r)^*) \)
Precedence Rules

* highest

Example:

\[ab^* + c = (a (b)^*) + c \]
Examples:

1. \(\Sigma = \{a, b\}, \{w \in \Sigma^* \mid w \text{ has an odd number of } a\text{'s followed by an even number of } b\text{'s}\}. \quad a(aa)^* (bb)^* \)

2. \(\Sigma = \{a, b\}, \{w \in \Sigma^* \mid w \text{ has no more than 3 } a\text{'s and must end in } ab\}\).

3. Regular expression for all integers (including negative)

\[
\left(a^* + b^* \right)^* \left(a^* + b^* \right)^* (a+b)^*
\]

\[
\left(a^* + b^* \right)^* \left(a^* + b^* \right)^* (1+2+...+9)^* \left(0+1+2+...+9 \right)^*
\]
Section 3.2 Equivalence of DFA and R.E.

Theorem Let \(r \) be a R.E. Then \(\exists \) NFA \(M \) s.t. \(L(M) = L(r) \).

- Proof:

\[
\emptyset \\
\{ \lambda \} \\
\{ a \}
\]

Suppose \(r \) and \(s \) are R.E.

1. \(r+s \)
2. \(r \circ s \)
3. \(r^* \)
Example

$ab^* + c$

Did in JT2AP
Theorem Let L be regular. Then \exists R.E. r s.t. $L = L(r)$.

Proof Idea: remove states sucessively until two states left

• Proof:

 L is regular
 \[
 \Rightarrow \exists \text{ NFA } M \text{ s.t. } L = L(M)
 \]

1. Assume M has one final state and $q_0 \notin F$

2. Convert to a generalized transition graph (GTG), all possible edges are present.
 If no edge, label with \emptyset
 Let r_{ij} stand for label of the edge from q_i to q_j
3. If the GTG has only two states, then it has the following form:

In this case the regular expression is:

\[r = (r_{ii}^*r_{ij}r_{jj}^*r_{ji}^*)^*r_{ii}^*r_{ij}r_{jj}^* \]
4. If the GTG has three states then it must have the following form:
<table>
<thead>
<tr>
<th>REPLACE</th>
<th>WITH</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{ii}</td>
<td>$r_{ii} + r_{ik}r_{kk}^*r_{ki}$</td>
</tr>
<tr>
<td>r_{jj}</td>
<td>$r_{jj} + r_{jk}r_{kk}^*r_{kj}$</td>
</tr>
<tr>
<td>r_{ij}</td>
<td>$r_{ij} + r_{ik}r_{kk}^*r_{kj}$</td>
</tr>
<tr>
<td>r_{ji}</td>
<td>$r_{ji} + r_{jk}r_{kk}^*r_{ki}$</td>
</tr>
</tbody>
</table>

remove state q_k
5. If the GTG has four or more states, pick a state q_k to be removed (not initial or final state).

For all $o \neq k, p \neq k$ use the rule r_{op} replaced with $r_{op} + r_{ok}r_{kk}^*r_{kp}$ with different values of o and p.

When done, remove q_k and all its edges. Continue eliminating states until only two states are left. Finish with step 3.
6. In each step, simplify the regular expressions r and s with:

\[
\begin{align*}
 r + r &= r \\
 s + r^*s &= \Sigma^* \\
 r + \emptyset &= r \\
 r\emptyset &= \emptyset \\
 \emptyset^* &= \emptyset \\
 r\lambda &= r \\
 (\lambda + r)^* &= r^* \\
 (\lambda + r)r^* &= r^*
\end{align*}
\]

and similar rules.
Example:
Grammar $G = (V, T, S, P)$

- V variables (nonterminals)
- T terminals
- S start symbol
- P productions

Right-linear grammar:

all productions of form

$A \rightarrow xB$
$A \rightarrow x$

where $A, B \in V$, $x \in T^*$
Left-linear grammar:

all productions of form
\[A \rightarrow Bx \]
\[A \rightarrow x \]
where \(A,B \in V, \ x \in T^* \)

Definition:

A regular grammar is a right-linear or left-linear grammar.
Example 1:

\[G = (\{S\}, \{a, b\}, S, P), \quad P = \]

- \[S \rightarrow abS \]
- \[S \rightarrow \lambda \]
- \[S \rightarrow \text{Sab} \]

Not regular
Both left-linear and right-linear
Example 2:

\[G = (\{S,B\}, \{a,b\}, S, P), \quad P = \]
\[S \rightarrow aB \mid bS \mid \lambda \]
\[B \rightarrow aS \mid bB \]
Theorem: \(L \) is a regular language iff \(\exists \) regular grammar \(G \) s.t. \(L=L(G) \).

Outline of proof:

\(\leftarrow \rightarrow \) Given a regular grammar \(G \)
Construct NFA \(M \)
Show \(L(G)=L(M) \)

\(\rightarrow \rightarrow \) Given a regular language
\(\exists \) DFA \(M \) s.t. \(L=L(M) \)
Construct reg. grammar \(G \)
Show \(L(G) = L(M) \)
Proof of Theorem:

\((\Leftarrow)\) Given a regular grammar \(G\)
\(G=(V,T,S,P)\)

\[V=\{V_0, V_1, \ldots, V_y\}\]
\[T=\{v_0, v_1, \ldots, v_z\}\]
\[S=V_0\]

Assume \(G\) is right-linear
(see book for left-linear case).
Construct NFA \(M\) s.t. \(L(G)=L(M)\)
If \(w\in L(G), w=v_1v_2\ldots v_k\)

\[V_0 \Rightarrow v_1V_1\]
\[\Rightarrow v_1v_2V_j\]
\[\Rightarrow v_1v_2\ldots v_{k-1}V_0\]
\[\Rightarrow v_1v_2\ldots v_{k-1}V_k\]
\[M = (V \cup \{ V_f \}, T, \delta, V_0, \{ V_f \}) \]

V_0 is the start (initial) state

For each production, $V_i \rightarrow aV_j$,

\[S(V_i, a) = V_j \]

For each production, $V_i \rightarrow a$,

\[S(V_i, a) = V_f \]

Show $L(G) = L(M)$

Thus, given R.G. G,

$L(G)$ is regular
\iff Given a regular language L
\exists DFA M s.t. $L = L(M)$
$M = (Q, \Sigma, \delta, q_0, F)$
$Q = \{q_0, q_1, \ldots, q_n\}$
$\Sigma = \{a_1, a_2, \ldots, a_m\}$

Construct R.G. G s.t. $L(G) = L(M)$
$G = (Q, \Sigma, q_0, P)$
if $\delta(q_i, a_j) = q_k$ then
$q_i \rightarrow a_j q_k \in P$
if $q_k \in F$ then
$q_k \rightarrow \lambda \in P$

Show $w \in L(M) \iff w \in L(G)$
Thus, $L(G) = L(M)$.

QED.
Example

\[G = (\{S,B\}, \{a,b\}, S, P), \quad P = \]
\[S \rightarrow aB \mid bS \mid \lambda \]
\[B \rightarrow aS \mid bB \]
Example:

\[
G = (\Sigma, Q, \delta, q_0, F)
\]

\[
P =
\begin{align*}
q_0 & \rightarrow a q_1 \\
q_1 & \rightarrow b q_0 | a q_0
\end{align*}
\]