Section: Properties of Regular Languages

Example

\[L = \{a^nba^n \mid n > 0\} \]

Closure Properties

A set is closed over an operation if

\[L_1, L_2 \in \text{class} \]
\[L_1 \text{ op } L_2 = L_3 \]
\[\Rightarrow L_3 \in \text{class} \]
\(L = \{ x \mid x \text{ is a positive even integer} \} \)

\(L \) is closed under

- addition? \(\text{yes} \)
- multiplication? \(\text{yes} \)
- subtraction? \(\text{no} \)
- division? \(\text{no} \)

Closure of Regular Languages

Theorem 4.1 If \(L_1 \) and \(L_2 \) are regular languages, then

\[
\begin{align*}
L_1 \cup L_2 \\
L_1 \cap L_2 \\
L_1 L_2 \\
\overline{L_1} \\
L_1^*
\end{align*}
\]

are regular languages.
Proof (sketch)

L_1 and L_2 are regular languages
⇒ \exists reg. expr. r_1 and r_2 s.t.
 $L_1 = L(r_1)$ and $L_2 = L(r_2)$
 $r_1 + r_2$ is r.e. denoting $L_1 \cup L_2$
 ⇒ closed under union
 $r_1 r_2$ is r.e. denoting $L_1 L_2$
 ⇒ closed under concatenation
 r_1^* is r.e. denoting L_1^*
 ⇒ closed under star-closure
complementation:

L_1 is reg. lang.

$\Rightarrow \exists$ DFA M s.t. $L_1 = L(M)$

Construct M' s.t.

- Final states in M are nonfinal states in M'
- Nonfinal states in M are final states in M'

Show $w \notin L(M_1) \Rightarrow w \in L$ is closed under complementation.
intersection:

L_1 and L_2 are reg. lang.

$\Rightarrow \exists$ DFA M_1 and M_2 s.t.

$L_1 = L(M_1)$ and $L_2 = L(M_2)$

$M_1 = (Q, \Sigma, \delta_1, q_0, F_1)$

$M_2 = (P, \Sigma, \delta_2, p_0, F_2)$

Construct $M' = (Q', \Sigma, \delta', (q_0, p_0), F')$

$Q' = \varnothing \times P$

δ':

$\delta'(((q_i, p_i), a)) = (q_k, p_e)$ if

$\delta_1((q_i, a) = q_k) \in M_1$ and

$\delta_2((p_i, a) = p_e) \in M_2$

$F' = \{ (q_i, p_i) \in Q' \mid q_i \in F_1 \land p_i \in F_2 \}$
Example:
Regular languages are closed under

- reversal \(L^R \)
- difference \(L_1 - L_2 \)
- right quotient \(L_1 / L_2 \)
- homomorphism \(h(L) \)
Right quotient

Def: \(L_1/L_2 = \{ x \mid xy \in L_1 \text{ for some } y \in L_2 \} \)

Example:

\[L_1 = \{ a^*b^* \cup b^*a^* \} \]
\[L_2 = \{ b^n \mid n \text{ is even, } n > 0 \} \]
\[L_1/L_2 = \]
idea

Try every state as a start state. Can you get a string from L_2?
Theorem If L_1 and L_2 are regular, then L_1/L_2 is regular.

Proof (sketch)

\exists DFA $M=(Q,\Sigma,\delta,q_0,F)$ s.t. $L_1 = L(M)$.

Construct DFA $M'=(Q,\Sigma,\delta,q_0,F')$

For each state i do

Make i the start state (representing L'_i)

If $L'_i \cap L_2 \neq \emptyset$

put q_i in F' in M'

QED.
Homomorphism

Def. Let Σ, Γ be alphabets. A homomorphism is a function

$$h: \Sigma \rightarrow \Gamma^*$$

Example:

$\Sigma = \{a, b, c\}, \Gamma = \{0, 1\}$

- $h(a) = 11$
- $h(b) = 00$
- $h(c) = 0$

$h(bc) = 000$

$h(ab^*) = 10000^*$
Questions about regular languages:
L is a regular language.

- Given L, Σ, w ∈ Σ*, is w ∈ L?

 Construct DFA test to see if it accepts w

- Is L empty?

 DFS

- Is L infinite?

 Check for cycle on path from start state to final state

- Does L₁ = L₂?

 \((L₁ \cup L₂) \cap (L₁ \cap L₂) = \emptyset\)

 equivalent
Identifying Nonregular Languages

If a language L is finite, is L regular? Yes

If L is infinite, is L regular? Maybe

- $L_1 = \{a^n b^m | n > 0, m > 0\}$ = aabb
- $L_2 = \{a^n b^n | n > 0\}$ Not
Prove that \(L_2 = \{a^n b^n | n > 0 \} \) is not regular.

- Proof: Suppose \(L_2 \) is regular.
 \(\Rightarrow \exists \) DFA M that recognizes \(L_2 \)

M has a finite number of states, \(K \) states

Consider a long string \(a^K b^K \in L_2 \)

With \(K \) states, there must be a loop in the a's
Some loop in the d's, say \(a^3 \) in the loop

\[\rightarrow 0 \]

\[a < b^k \] is accepted

\[\Rightarrow a^{k+1} b^k \] is also accepted

\[a^{k+1} b^k \notin \Sigma^2 \]

Contradiction. DFA doesn't exist.
Pumping Lemma: Let L be an infinite regular language. \exists a constant $m > 0$ such that any $w \in L$ with $|w| \geq m$ can be decomposed into three parts as $w = xyz$ with

$$|xy| \leq m$$
$$|y| \geq 1$$
$$xy^iz \in L \text{ for all } i \geq 0$$
To Use the Pumping Lemma to prove L is not regular:

- Proof by Contradiction.
 Assume L is regular.
 ⇒ L satisfies the pumping lemma.
 Choose a long string \(w \) in L, \(|w| \geq m \).
 Show that there is NO division of \(w \) into \(xyz \) (must consider all possible divisions) such that \(|xy| \leq m, |y| \geq 1 \) and \(xy^iz \in L \ \forall \ i \geq 0 \).
 The pumping lemma does not hold. Contradiction!
 ⇒ L is not regular. QED.
Example $L = \{a^n cb^n | n > 0\}$

L is not regular.

- **Proof:**

 Assume L is regular.

 ⇒ the pumping lemma holds.

 Choose $w = a^m cb^m$

 only way to partition it into three parts xyz

 $x = a^k$, $y = a^j$, $j > 0$

 $m - k - j c b^m$

 $z = a^{m-k-j} cb^m$
it should be

$$xy^iz \leq 1$$

$$a \geq 0$$

$$x^y = 2x = 2y$$

Contradiction.

$$\Rightarrow L$$ is not regular.
Example $L=\{a^nb^{n+s}c^s|n, s > 0\}$

L is not regular.

- **Proof:**

 Assume L is regular.

 \Rightarrow the pumping lemma holds.

 Choose $w=a^{rn}b^{m+s}c^s$

 So the partition is:

 $w=xyz$ \[P.L.\]

 $|xy| \leq m$ \[\Rightarrow\]

 $i=0, m-1 \leq m+s \leq k$ \[\Rightarrow\]

 $\text{num } a^s \neq \text{num } a^s + \text{num } c^s$
Example $\Sigma = \{a, b\}$,
$L = \{w \in \Sigma^* \mid n_a(w) > n_b(w)\}$

L is not regular.

- **Proof:**

 Assume L is regular.

 \Rightarrow the pumping lemma holds.

 Choose $w = b^m a^m + 1$

 So the partition is:

 $x = b^i$, $y = b^j$, $i > 0$

 $z = b^{m-k-j} a^{m+1}$

 $\forall i \, x y^i z \in L$

 $i = 2 \, x y z = b^9 a^4 \notin L$

 num of $a's \leq \text{num of } b's$
Example $L = \{a^3b^nc^{n-3} | n > 3\}$
(shown in detail on handout)
L is not regular.
To Use Closure Properties to prove L is not regular:

- **Proof Outline:**

 Assume L is regular.

 Apply closure properties to L and other regular languages, constructing L' that you know is not regular.

 closure properties $\Rightarrow L'$ is regular. Contradiction!

 L is not regular. QED.
Example $L = \{a^3b^n c^{n-3} | n > 3\}$

L is not regular.

- Proof: (proof by contradiction)
 Assume L is regular.
 Define a homomorphism $h : \Sigma \rightarrow \Sigma^*$
 $h(a) = a \ h(b) = a \ h(c) = b$
 $h(L) = \{a^n b^{n-3} | n > 3\}$ is regular.
Example $L = \{a^n b^m a^m | m \geq 0, n \geq 0\}$

L is not regular.

- Proof: (proof by contradiction)
 Assume L is regular.

$$L_1 = b b^* a^*$$

$$L_2 = L \cap \{b^n a | n \geq 0\}$$

Define homomorphism $h: \Sigma \rightarrow \Sigma^*$

$$h(a) = b \quad h(b) = a$$

$$h(L_2) = \{a^n b^n | n \geq 0\}$$

Showed that L is not regular

$\Rightarrow L$ is not regular.
Example: \(L_1 = \{ a^n b^n a^n \mid n > 0 \} \)

\(L_1 \) is not regular.

Proof

Assume \(L_1 \) is regular

Let \(L_2 = \{ a^n \} \) \(L_2 \) is regular right quotient

\(L_3 = L_1 \setminus L_2 = \{ a^n a^n \mid n > 0, 0 \leq p \leq n \} \)

\(L_4 = L_3 \cap \{ a b b \} = \{ a b^n \mid n > 0 \} \)

should be regular

But shown not regular

Contradiction!

\(\Rightarrow L_1 \) is not regular