Read Section 12.1.

Computability A function f with domain D is *computable* if there exists some TM M such that M computes f for all values in its domain.

Decidability A problem is *decidable* if there exists a TM that can answer yes or no to every statement in the domain of the problem.

The Halting Problem

Domain: set of all TMs and all strings w.

Question: Given coding of M and w, does M halt on w? (yes or no)

Theorem The halting problem is undecidable.

Proof: (by contradiction)

- Assume there is a TM H (or algorithm) that solves this problem.
- TM H has 2 final states, q_y represents yes and q_n represents no.
- TM H has input the coding of TM M (denoted w_M) and input string w and ends in state q_y (yes) if M halts on w and ends in state q_n (no) if M doesn’t halt on w.

$$H(w_M, w) = \begin{cases}
(yes) \text{ halts in } q_y & \text{if } M \text{ halts on } w \\
(no) \text{ halts in } q_n & \text{if } M \text{ doesn’t halt on } w
\end{cases}$$

TM H always halts in a final state.

Construct TM H' from H such that H' halts if H ends in state q_n and H' doesn’t halt if H ends in state q_y.

$$H'(w_M, w) = \begin{cases}
\text{halts} & \text{if } M \text{ doesn’t halt on } w \\
\text{doesn’t halt} & \text{if } M \text{ halts on } w
\end{cases}$$
Construct TM \hat{H} from H' such that \hat{H} makes a copy of w_M and then behaves like H'. (simulates TM M on the input string that is the encoding of TM M, applies M_w to M_w).

So $\hat{H}(w_M)$ runs $H'(w_M, w_M)$

$$\hat{H}(w_M) = \begin{cases} \text{halts} & \text{if } M \text{ doesn’t halt on } w_M \\ \text{doesn’t halt} & \text{if } M \text{ halts on } w_M \end{cases}$$

Note that \hat{H} is a TM.

There is some encoding of it, say $\hat{w}_\hat{H}$.

What happens if we run \hat{H} with input $\hat{w}_\hat{H}$?

Theorem If the halting problem were decidable, then every recursively enumerable language would be recursive. Thus, the halting problem is undecidable.

- **Proof**: Let L be an RE language over Σ.
 Let M be the TM such that $L=L(M)$.
 Let H be the TM that solves the halting problem.
A problem A is *reduced* to problem B if the decidability of B follows from the decidability of A. Then if we know B is undecidable, then A must be undecidable.

State-entry problem Given TM \(M=(Q, \Sigma, \Gamma, \delta, q_0, B, F) \), state \(q \in Q \), and string \(w \in \Sigma^* \), is state \(q \) ever entered when \(M \) is applied to \(w \)?

This is an undecidable problem!

- **Proof:** We will reduce this problem to the halting problem.

 Suppose we have a TM \(E \) to solve the state-entry problem.

 TM \(E \) takes as input the coding of a TM \(M \) (denoted by \(w_M \)), a string \(w \) and a state \(q \). TM \(E \) answers *yes* if state \(q \) is entered and *no* if state \(q \) is not entered.

 Construct TM \(E' \) which does the following. On input \(w_M \) and \(w \) \(E' \) first examines the transition functions of \(M \). Whenever \(\delta \) is not defined for some state \(q_i \) and symbol \(a \) add the transition \(\delta(q_i, a) = (q, a, R) \). Let this new state \(q \) be the only final state. Let \(M' \) be the modified TM. Next, simulate TM \(E \) on input \(w_M' \), \(w \) and \(q \).

\[
E'(w_M, w) = \begin{cases}
\text{M halts on } w & \text{if } M' \text{ enters state } q \\
\text{M doesn't halt on } w & \text{if } M' \text{ doesn't enter state } q
\end{cases}
\]

TM \(E' \) determines if \(M \) halts on \(w \). If \(M \) halts on \(w \) then TM \(E' \) will enter state \(q \) in \(M' \) and answer *yes*. If \(M \) doesn't halt on \(w \) then TM \(E' \) will not enter state \(q \), so it will answer *no*. Since the state-entry problem is decidable, \(E \) always gives an answer *yes* or *no*.

But the halting problem is undecidable. Contradiction! Thus, the state-entry problem must be undecidable. QED.

There are some more examples of undecidability in section 12.1.