Section: Decidability

Computability A function f with domain D is *computable* if there exists some TM M such that M computes f for all values in its domain.

Decidability A problem is *decidable* if there exists a TM that can answer yes or no to every statement in the domain of the problem.
The Halting Problem

Domain: set of all TMs and all strings w.

Question: Given coding of M and w, does M halt on w?
Theorem The halting problem is undecidable.

Proof: (by contradiction)

• Assume there is a TM H (or algorithm) that solves this problem.
 TM H has 2 final states, \(q_y \) represents yes and \(q_n \) represents no.
 \[
 H(w_M, w) = \begin{cases}
 \text{halts } q_y & \text{if } M \text{ halts on } w \\
 \text{halts } q_n & \text{if } M \text{ doesn’t halt on } w
 \end{cases}
 \]
 TM H always halts in a final state.
Construct TM H' from H

$$H'(w_M, w) = \begin{cases}
\text{halts} & \text{if } M \text{ not halt on } w \\
\text{not halt} & \text{if } M \text{ halts on } w
\end{cases}$$

Construct TM \hat{H} from H'

$$\hat{H}(w_M) = \begin{cases}
\text{halts} & \text{if } M \text{ not halt on } w_M \\
\text{not halt} & \text{if } M \text{ halts on } w_M
\end{cases}$$

Note that \hat{H} is a TM.

There is some encoding of it, say $\hat{w}_{\hat{H}}$.

What happens if we run \hat{H} with input $\hat{w}_{\hat{H}}$?
Theorem If the halting problem were decidable, then every recursively enumerable language would be recursive. Thus, the halting problem is undecidable.

Proof: Let L be an RE language over Σ. Let M be the TM such that $L = L(M)$. Let H be the TM that solves the halting problem.
A problem A is *reduced* to problem B if the decidability of B follows from the decidability of A. Then if we know B is undecidable, then A must be undecidable.
State-entry problem Given TM
$M=(Q, \Sigma, \Gamma, \delta, q_0, B, F)$, state $q \in Q$, and
string $w \in \Sigma^*$, is state q ever entered
when M is applied to w?

This is an undecidable problem!

• Proof:

TM E solves state-entry problem

$$E'(w_M, w) = \begin{cases}
\text{M halts on } w & \text{if } \uparrow \\
\text{M doesn’t halt on } w & \text{if } \downarrow
\end{cases}$$