Relational Database Design Theory
Introduction to Databases
CompSci 316 Spring 2020

Announcements (Thu. Feb. 13)
• HW3: Q4-Q5 due Saturday 02/15 **12 NOON**
• Midterm next Tuesday 02/18 in class
 • Open book, open notes
 • No electronic devices, no collaboration
 • Everything covered until and including TODAY Thursday 02/13 included!
 • Sample midterm on sakai resources -> midterm
 • HW1, HW2 sample solutions on sakai
• We will move some office hours to next Monday for the midterm
 • Follow piazza announcements

Today’s plan
• Start database design theory
 • Functional dependency, BCNF
 • Review some concepts in between and at the end
 • Weak entity set, ISA, multiplicity, etc. in ER diagram
 • Outer joins, different join types
 • Triggers
 • EXISTS
 • Foreign keys

Motivation
Why is UserGroup (uid, uname, gid) a bad design?

Wouldn’t it be nice to have a systematic approach to detecting and removing redundancy in designs?
 • Dependencies, decompositions, and normal forms

Functional dependencies
A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
$X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y

Address (street_address, city, state, zip)

FD examples
Redefining “keys” using FD’s

A set of attributes K is a key for a relation R if
• $K \rightarrow$ all (other) attributes of R
 • That is, K is a “super key”
• No proper subset of K satisfies the above condition
 • That is, K is minimal

Reasoning with FD’s

Given a relation R and a set of FD’s \mathcal{F}
• Does another FD follow from \mathcal{F}?
 • Are some of the FD’s in \mathcal{F} redundant (i.e., they follow from the others)?
• Is K a key of R?
 • What are all the keys of R?

Attribute closure

• Given R, a set of FD’s \mathcal{F} that hold in R, and a set of attributes Z in R:
 The closure of Z (denoted Z^+) with respect to \mathcal{F} is the set of all attributes $\{A_1, A_2, \ldots\}$ functionally determined by Z (that is, $Z \rightarrow A_1 A_2 \ldots$)
• Algorithm for computing the closure
 • Start with closure $= Z$
 • If $X \rightarrow Y$ is in \mathcal{F} and X is already in the closure, then also add Y to the closure
 • Repeat until no new attributes can be added

Example of computing closure

• $\{\text{gid, twitterid}\}^+ = ?$
• twitterid \rightarrow uid
 • Add uid
 • Closure grows to $\{\text{gid, twitterid, uid}\}$
• uid \rightarrow uname, twitterid
 • Add uname, twitterid
 • Closure grows to $\{\text{gid, twitterid, uid, uname}\}$
• uid, gid \rightarrow fromDate
 • Add fromDate
 • Closure is now all attributes in UserJoinsGroup

A more complex example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)
Assume that there is a 1-1 correspondence between our users and Twitter accounts
• uid \rightarrow uname, twitterid
• twitterid \rightarrow uid
• uid, gid \rightarrow fromDate

Not a good design, and we will see why shortly

Using attribute closure

Given a relation R and set of FD’s \mathcal{F}
• Does another FD $X \rightarrow Y$ follow from \mathcal{F}?
 • Compute X^+ with respect to \mathcal{F}
 • If $Y \subseteq X^+$, then $X \rightarrow Y$ follows from \mathcal{F}
• Is K a key of R?
 • Compute K^+ with respect to \mathcal{F}
 • If K^+ contains all the attributes of R, K is a super key
 • Still need to verify that K is minimal (how?)
Rules of FD’s

- Armstrong’s axioms
 - Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

- Rules derived from axioms
 - Splitting: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
 - Combining: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$

Using these rules, you can prove or disprove an FD given a set of FDs

(Problems with) Non-key FD’s

- Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key
 - Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

\[
\begin{array}{ccc}
X & Y & Z \\
\hline
a & b & c_1 \\
a & b & c_2 \\
\vdots & \vdots & \vdots \\
\end{array}
\]

That b is associated with a is recorded multiple times: redundancy, update/insertion/deletion anomaly

Example of redundancy

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

- $uid \rightarrow uname, twitterid$
 (... plus other FD's)

<table>
<thead>
<tr>
<th>uid</th>
<th>uname</th>
<th>twitterid</th>
<th>gid</th>
<th>fromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>@bart Simpson</td>
<td>123</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>@milhouse</td>
<td>857</td>
<td>1986-12-17</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisa</td>
<td>456</td>
<td>1990-06-05</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Unnecessary decomposition

<table>
<thead>
<tr>
<th>uid</th>
<th>uname</th>
<th>twitterid</th>
<th>gid</th>
<th>fromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>@bart Simpson</td>
<td>123</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>@milhouse</td>
<td>857</td>
<td>1986-12-17</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisa</td>
<td>456</td>
<td>1990-06-05</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

- Fine: join returns the original relation
- Unnecessary: no redundancy is removed; schema is more complicated (and uid is stored twice!)

Bad decomposition

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
<th>fromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>123</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>857</td>
<td>1986-12-17</td>
</tr>
<tr>
<td>857</td>
<td>456</td>
<td>1990-06-05</td>
</tr>
<tr>
<td>456</td>
<td>857</td>
<td>1986-04-05</td>
</tr>
</tbody>
</table>

- Association between gid and fromDate is lost
- Join returns more rows than the original relation
Lossless join decomposition

- Decompose relation R into relations S and T
 - $\text{attrs}(R) = \text{attrs}(S) \cup \text{attrs}(T)$
 - $S = \pi_{\text{attrs}(S)}(R)$
 - $T = \pi_{\text{attrs}(T)}(R)$
- The decomposition is a lossless join decomposition if, given known constraints such as FD's, we can guarantee that $R \subseteq S \bowtie T$
 - Any decomposition gives $R \subseteq S \bowtie T$ (why?)
 - A lossy decomposition is one with $R \subset S \bowtie T$

Questions about decomposition

- When to decompose
- How to come up with a correct decomposition (i.e., lossless join decomposition)

BCNF decomposition algorithm

- Find a BCNF violation
 - That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R
- Decompose R into R_1 and R_2, where
 - R_1 has attributes $X U Y$
 - R_2 has attributes $X U Z$, where Z contains all attributes of R that are in neither X nor Y
- Repeat until all relations are in BCNF

BCNF decomposition example

- **UserJoinsGroup** (uid, uname, twitterid, gid, fromDate)
 - **BCNF violation:** $\text{uid} \rightarrow \text{uname, twitterid}$
 - **User** (uid, uname, twitterid)
 - $\text{uid} \rightarrow \text{uname, twitterid}$
 - **Twitterid** \rightarrow **uid**
 - **Member** (gid, fromDate)
 - $\text{uid, gid} \rightarrow \text{fromDate}$
 - **BCNF**
Another example

User:JointsGroup (uid, uname, twitterid, gid, fromDate)

BCNF violation: twitterid \rightarrow uid

UserId (twitterid, uid)

User:JointsGroup' (twitterid, uname, gid, fromDate)

BCNF violation: twitterid \rightarrow uname

UserName (twitterid, uname)

Member (twitterid, gid, fromDate)

BCNF

Why is BCNF decomposition lossless

Given non-trivial $X \rightarrow Y$ in R where X is not a super key of R, need to prove:

• Anything we project always comes back in the join:
 \[R \subseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R) \]
 • Sure; and it doesn't depend on the FD

• Check and prove yourself!

• Anything that comes back in the join must be in the original relation:
 \[R \supseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R) \]
 • Proof will make use of the fact that $X \rightarrow Y$

Recap

• Functional dependencies: a generalization of the key concept
• Non-key functional dependencies: a source of redundancy
• BCNF decomposition: a method for removing redundancies
 • BCNF decomposition is a lossless join decomposition
• BCNF: schema in this normal form has no redundancy due to FD's

Summary

• Philosophy behind BCNF:
 Data should depend on the key, the whole key, and nothing but the key!
 • You could have multiple keys though

• Other normal forms
 • 4NF and Multi-valued-dependencies: later in the course
 • Not covered
 • 3NF: More relaxed than BCNF; will not remove redundancy if doing so makes FDs harder to enforce
 • 2NF: Slightly more relaxed than 3NF
 • 1NF: All column values must be atomic