Relational Database Design Theory

Introduction to Databases
CompSci 316 Spring 2020
Announcements (Thu. Feb. 13)

• HW3: Q4-Q5 due Saturday 02/15 **12 NOON**

• Midterm next Tuesday 02/18 in class
 • Open book, open notes
 • No electronic devices, no collaboration
 • Everything covered until and including TODAY Thursday 02/13 included!
 • Sample midterm on sakai -> resources -> midterm
 • HW1, HW2 sample solutions on sakai

• We will move some office hours to next Monday for the midterm
 • Follow piazza announcements
Today’s plan

• Start database design theory
 • Functional dependency, BCNF

• Review some concepts in between and at the end
 • Weak entity set, ISA, multiplicity, etc. in ER diagram
 • Outer joins, different join types
 • Triggers
 • EXISTS
 • Foreign keys
Motivation

• Why is \textit{UserGroup (uid, uname, gid)} a bad design?
 • It has \textit{redundancy}—user name is recorded multiple times, once for each group that a user belongs to
 • Leads to update, insertion, deletion anomalies

• Wouldn’t it be nice to have a systematic approach to detecting and removing redundancy in designs?
 • Dependencies, decompositions, and normal forms
Functional dependencies

• A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R

• $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>?</td>
</tr>
</tbody>
</table>

Must be b Could be anything
FD examples

Address (street_address, city, state, zip)

• street_address, city, state → zip

• zip → city, state

• zip, state → zip?
 • This is a trivial FD
 • Trivial FD: LHS ⊇ RHS

• zip → state, zip?
 • This is non-trivial, but not completely non-trivial
 • Completely non-trivial FD: LHS ∩ RHS = ∅
Redefining “keys” using FD’s

A set of attributes K is a key for a relation R if

- $K \rightarrow$ all (other) attributes of R
 - That is, K is a “super key”

- No proper subset of K satisfies the above condition
 - That is, K is minimal
Reasoning with FD’s

Given a relation R and a set of FD’s \mathcal{F}

• **Does another FD follow from \mathcal{F}?**
 • Are some of the FD’s in \mathcal{F} redundant (i.e., they follow from the others)?

• **Is K a key of R?**
 • What are all the keys of R?
Attribute closure

• Given R, a set of FD’s \mathcal{F} that hold in R, and a set of attributes Z in R: The closure of Z (denoted Z^+) with respect to \mathcal{F} is the set of all attributes $\{A_1, A_2, \ldots\}$ functionally determined by Z (that is, $Z \rightarrow A_1A_2 \ldots$)

• Algorithm for computing the closure
 • Start with closure $= Z$
 • If $X \rightarrow Y$ is in \mathcal{F} and X is already in the closure, then also add Y to the closure
 • Repeat until no new attributes can be added

Example
On board
Using next slide
A more complex example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

Assume that there is a 1-1 correspondence between our users and Twitter accounts

- uid → uname, twitterid
- twitterid → uid
- uid, gid → fromDate

Not a good design, and we will see why shortly
Example of computing closure

• \(\{\text{gid, twitterid}\}^+ = ? \)
• twitterid → uid
 • Add uid
 • Closure grows to \(\{\text{gid, twitterid, uid}\} \)
• uid → uname, twitterid
 • Add uname, twitterid
 • Closure grows to \(\{\text{gid, twitterid, uid, uname}\} \)
• uid, gid → fromDate
 • Add fromDate
 • Closure is now all attributes in UserJoinsGroup
Using attribute closure

Given a relation R and set of FD’s \mathcal{F}

- Does another FD $X \rightarrow Y$ follow from \mathcal{F}?
 - Compute X^+ with respect to \mathcal{F}
 - If $Y \subseteq X^+$, then $X \rightarrow Y$ follows from \mathcal{F}

- Is K a key of R?
 - Compute K^+ with respect to \mathcal{F}
 - If K^+ contains all the attributes of R, K is a super key
 - Still need to verify that K is minimal (how?)
Rules of FD’s

• Armstrong’s axioms
 • Reflexivity: If \(Y \subseteq X \), then \(X \rightarrow Y \)
 • Augmentation: If \(X \rightarrow Y \), then \(XZ \rightarrow YZ \) for any \(Z \)
 • Transitivity: If \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z \)

• Rules derived from axioms
 • Splitting: If \(X \rightarrow YZ \), then \(X \rightarrow Y \) and \(X \rightarrow Z \)
 • Combining: If \(X \rightarrow Y \) and \(X \rightarrow Z \), then \(X \rightarrow YZ \)

Using these rules, you can prove or disprove an FD given a set of FDs

We already used these intuitive rules but check yourself again!

End of lecture
Thursday 02/13
(Problems with) Non-key FD’s

• Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key
 • Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c_1</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c_2</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>

That b is associated with a is recorded multiple times: redundancy, update/insertion/deletion anomaly
Example of redundancy

\textit{UserJoinsGroup} \((uid, \, uname, \, twitterid, \, gid, \, fromDate)\)

- \(uid \rightarrow \) \textit{uname}, \textit{twitterid}

(... plus other FD's)
Decomposition

<table>
<thead>
<tr>
<th>uid</th>
<th>uname</th>
<th>twitterid</th>
<th>gid</th>
<th>fromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>@BartJSimpson</td>
<td>dps</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>@MilhouseVan_</td>
<td>gov</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
<td>abc</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
<td>gov</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
<td>abc</td>
<td>1991-04-25</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
<td>gov</td>
<td>1992-09-01</td>
</tr>
</tbody>
</table>

- Eliminates redundancy
- To get back to the original relation: ☀️
Unnecessary decomposition

<table>
<thead>
<tr>
<th>uid</th>
<th>uname</th>
<th>twitterid</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>@BartJSimpson</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>@MilhouseVan_</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Fine: join returns the original relation
- Unnecessary: no redundancy is removed; schema is more complicated (and *uid* is stored twice!)
Bad decomposition

- Association between gid and fromDate is lost
- Join returns more rows than the original relation
Lossless join decomposition

• Decompose relation R into relations S and T
 • $\text{attrs}(R) = \text{attrs}(S) \cup \text{attrs}(T)$
 • $S = \pi_{\text{attrs}(S)}(R)$
 • $T = \pi_{\text{attrs}(T)}(R)$

• The decomposition is a lossless join decomposition if, given known constraints such as FD’s, we can guarantee that $R = S \bowtie T$

• Any decomposition gives $R \subseteq S \bowtie T$ (why?)
 • A lossy decomposition is one with $R \subset S \bowtie T$
Loss? But I got more rows!

• “Loss” refers not to the loss of tuples, but to the loss of information
 • Or, the ability to distinguish different original relations

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
<th>fromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>dps</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>gov</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
<td>1991-04-25</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
<td>1992-09-01</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

No way to tell which is the original relation
Questions about decomposition

• When to decompose

• How to come up with a correct decomposition (i.e., lossless join decomposition)
An answer: BCNF

• A relation R is in **Boyce-Codd Normal Form** if
 • For every non-trivial FD $X \rightarrow Y$ in R, X is a super key
 • That is, all FDs follow from “key \rightarrow other attributes”

• When to decompose
 • As long as some relation is not in BCNF

• How to come up with a correct decomposition
 • Always decompose on a BCNF violation (details next)

Then it is guaranteed to be a lossless join decomposition!
BCNF decomposition algorithm

• Find a BCNF violation
 • That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super
 key of R

• Decompose R into R_1 and R_2, where
 • R_1 has attributes $X \cup Y$
 • R_2 has attributes $X \cup Z$, where Z contains all attributes
 of R that are in neither X nor Y

• Repeat until all relations are in BCNF
BCNF decomposition example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

BCNF violation: uid → uname, twitterid

User (uid, uname, twitterid) →
uid → uname, twitterid
twitterid → uid

Member (uid, gid, fromDate) →
uid, gid → fromDate

BCNF
Another example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

BCNF violation: twitterid → uid

UserId (twitterid, uid)

BCNF

UserJoinsGroup’ (twitterid, uname, gid, fromDate)

BCNF violation: twitterid → uname
twitterid, gid → fromDate

UserName (twitterid, uname)

BCNF

Member (twitterid, gid, fromDate)

BCNF
Why is BCNF decomposition lossless

Given non-trivial $X \rightarrow Y$ in R where X is not a super key of R, need to prove:

• Anything we project always comes back in the join:
 $$R \subseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$$
 • Sure; and it doesn’t depend on the FD

• Check and prove yourself!

• Anything that comes back in the join must be in the original relation:
 $$R \supseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$$
 • Proof will make use of the fact that $X \rightarrow Y$
Recap

• Functional dependencies: a generalization of the key concept
• Non-key functional dependencies: a source of redundancy
• BCNF decomposition: a method for removing redundancies
 • BNCF decomposition is a lossless join decomposition
• BCNF: schema in this normal form has no redundancy due to FD’s
Summary

• Philosophy behind BCNF: Data should depend on the key, the whole key, and nothing but the key!
 • You could have multiple keys though

• Other normal forms
 • 4NF and Multi-valued-dependencies: later in the course
 • Not covered
 • 3NF: More relaxed than BCNF; will not remove redundancy if doing so makes FDs harder to enforce
 • 2NF: Slightly more relaxed than 3NF
 • 1NF: All column values must be atomic