- **Horn-SAT**

 Proof: If algorithm outputs a solution, by design of algorithm, the solution must satisfy all clauses
 \[(x_1, x_2, x_3, \ldots, x_n)\]

 If algorithm outputs no, assume towards contradiction that there is a satisfying assignment
 \[(x_1', x_2', \ldots, x_n')\]

 let \(i_1, i_2, \ldots, i_k\) be the order in which the algorithm sets the variables to true.

 Case 1 if \(x_{i_1}', x_{i_2}', \ldots, x_{i_k}'\) are all true

 let \(C\) be the type 3 clause that assignment \((x_1, \ldots, x_n)\) violates,

 the variables in \(C\) must be in \(x_{i_1}, x_{i_2}, \ldots, x_{i_k}\)

 since \(x_{i_j}'\) is also true for \(j = 1, 2, \ldots, k\)

 \(C\) must be violated by \((x_{i_j}')\), contradiction

 Case 2 let \(i_j\) be the first variable where

 \(x_{i_j} = \text{true} \Rightarrow x_{i_j}' = \text{false}\)

 when \(x_{i_j}\) were set to true

 Case 2.1 \(x_{i_j}\) is set to true by a type 2 clause

 Case 2.2 \(x_{i_j}\) is set to true by a type 1 clause

 in both subcases this particular clause will be violated by \((x_{i_j}')\), contradiction.

- **Hoffman tree**

 - cost of merging two characters = sum of their
- cost of the tree = sum of merge costs

- form a tree \[\xrightarrow{\text{do } n-1 \text{ merge operations}} \]

- running time
 - naive implementation
 - \(n-1 \) iteration (every iteration reduces \#char. by 1)
 - \(\mathcal{O}(n) \) for each iteration
 - \(\mathcal{O}(n^2) \) use priority queue/heap
 - support: finding min. element, add, delete \(\mathcal{O}(\log n) \)
 - \(\mathcal{O}(n \log n) \)

- Proof of correctness:
 - we use induction.
 - Induction Hypothesis: Hoffman Tree algorithm finds an optimal encoding for all alphabets of size at most \(N \).
 - Base Case: when \(N = 1 \), there is only one solution with cost 0.
 - Induction Step: Assume I'H is true for \(N \), consider an alphabet of size \(n+1 \).
 - Assume towards contradiction that Hoffman Tree algorithm does not find the optimal solution. Let \(T \) be the tree found by algorithm
 - Let \(T' \) be the tree found by \(\mathcal{OPT} \), and \(i, j \) be the first two characters that the algorithm merged.
 - \(T' \) be two nodes at the highest depth in \(T \) that share the same parent
 - (note: one of \(i, j \) may overlap with one of \(i, j \))
let i', j' be two nodes at the lowest level in T_{opt} that share the same parent (note: one of i', j' may overlap with one of i, j)

let T_{opt} be a solution where i, j are swapped with i', j' in T_{opt}

let d_i be depth of i in T_{opt} (similarly for $d_{i'}, d_j, d_j'$), we have

\[
\text{cost}(T_{opt}) = \text{cost}(T_{opt}) - (w_i d_i + w_j d_j + \alpha_i \alpha_j w_i w_j d_i d_j) + (w_{i'} d_{i'} + w_{j'} d_{j'} + \alpha_{i'} \alpha_{j'} w_{i'} w_{j'} d_{i'} d_{j'})
\]

\[
= \text{cost}(T_{opt}) - (w_i - w_{i'}) (d_i - d_{i'}) - (w_j - w_{j'}) (d_j - d_{j'})
\]

\[
\leq \text{cost}(T_{opt})
\]

here the last inequality is because

$w_i \leq w_i', w_j \leq w_{j'}$ (ALG has chosen two characters with lowest freq.)

$0 \leq d_i, d_{i'}, d_j, d_{j'}$ (both i and j have highest depth)

Therefore, T_{opt} is also an optimal solution.

Now we know there is always an optimal solution that merges i and j.

the problem reduces to an alphabet of size m

by induction hypothesis, Huffman tree algorithm is optimal for this instance

therefore $\text{cost}(\text{ALG}) \leq \text{cost}(T_{opt}) \leq \text{cost}(T_{opt})$, this

contradicts with the assumption that ALG is not optimal.

Now we know ALG is always optimal even for alphabet of size $m+1$,

this finishes the induction. \square