1 Horn-SAT

Problem statement: Given a set of Horn clauses, determine whether there exists an assignment to variables such that all clauses are satisfied.

Proof:
If the algorithm outputs a solution, by design of algorithm, the solution must satisfy all clauses \((x_1, x_2, ..., x_n)\).

If the algorithm outputs no solution, assume towards contradiction, there is a satisfying assignment \((x'_1, x'_2, ..., x'_n)\). Let \(i_1, i_2, ..., i_k\) be the ordering in which the algorithm sets the variables to be true.

1. If \((x'_{i_1}, x'_{i_2}, ..., x'_{i_k})\) are all true, let \(C\) be the type 3 clause that assignment \((x_1, x_2, ..., x_n)\) violates, the variables in \(C\) must in \((x'_{i_1}, x'_{i_2}, ..., x'_{i_k})\). Since \(X'_{i_j}\) is also true for \(j = 1, 2, ..., k\), \(C\) must be violated by \(X'_{i_j}\). Thus, there is a contradiction.

2. Let \(i_j\) be the first variable where \(X_{i_j}\) is true and \(X'_{i_j}\) is false. When \(X_{i_j}\) were set to true. There are two possible cases.
 (a) \(X_{i_j}\) is set to true by a type 2 clause.
 (b) \(X_{i_j}\) is set to true by a type 1 clause.

In both sub-cases, this particular clause will be violated by \((x'_j)\). Thus, there is a contradiction.

2 Huffman Tree

Problem statement: Given a long string with \(n\) different characters in alphabet, find a way to encode these characters into binary codes that minimizes the length.

Algorithm

1. REPEAT
2. Select two characters with smallest frequencies
3. Merge them into a new character, whose frequency is the sum.
4. UNTIL (there is only one character)

Running Time:

1. Naive implementation: $O(n^2)$.
 - $n - 1$, every iterations reduces number of characters by 1
 - $O(n)$ for each iteration.

2. Priority Queue/Heap Implementation: $O(n\log n)$

Proof Of Correctness:

Induction Hypothesis: Huffman Tree algorithm finds an optimal encoding for all alphabets of size at most n.

Base Case: When $n = 1$, there is only one solution with cost 0.

Induction Step:

Assume induction hypothesis is true for n, consider an alphabet of size $n + 1$, assume towards contradiction that Hoffman Tree algorithm does not find the optimal solution, let T_{alg} be the tree found by the algorithm and T_{opt} be the tree found by OPT, and i, j be the first two characters that the algorithm merged.

If i, j are not children of the same node in T_{opt}:

Let i', j' be the two nodes at the highest depth in T_{opt} that share the same parent. Let T'_{opt} be a solution where i and j are swapped with i' and j' in T_{opt}.

Let d_i be the depth of i in T_{opt}, and similarly for $d_j, d_{i'}$ and $d_{j'}$. We have thus:

$$
\text{cost}(T'_{opt}) = \text{cost}(T_{opt}) - (W_i * d_i + W_j * d_j + W_{i'}d_{i'} + W_{j'} * d_{j'}) + (W_i * d_{i'} + W_j * d_{j'} + W_{i'd_i} + W_{j'd_j})
$$

$$
\leq \text{cost}(T_{opt}) - (W_{i'} - W_i)(d_i - d_{i'}) - (W_{j'} - W_j)(d_j - d_{j'})
$$

Therefore, T'_{opt} is also an optimal solution.

Now that we know there is always an optimal solution that merges i and j, the problem reduces to an alphabet of size n. By induction hypothesis, Hoffman tree algorithm is optimal for this instance. Therefore, $\text{cost}(T_{alg}) < \text{cost}(T_{opt})$. Thus, it contradicts with the assumption that T_{alg} is optimal.