Example

For an uninformed strategy, N_1 and N_2 are just two nodes (at some position in the search tree).
Example

For a heuristic strategy counting the number of misplaced tiles, N_2 is more promising than N_1.

Heuristic Function

- The heuristic function $h(N) \geq 0$ estimates the cost to go from STATE(N) to a goal state.

 Value is independent of the current search tree; it depends only on STATE(N) and the goal test GOAL.

- Example:

 \[
 \begin{array}{ccc}
 1 & 2 & 3 \\
 4 & 5 & 6 \\
 7 & 8 & _ \end{array}
 \quad \text{Goal state}
 \]

 \[
 \begin{array}{ccc}
 5 & 8 & _ \\
 4 & 2 & 1 \\
 7 & 3 & 6 \\
 \end{array}
 \quad \text{STATE(N)}
 \]

 - $h(N) = \text{number of misplaced numbered tiles} = 6$
 - [Why is it an estimate of the distance to the goal?]
Robot Navigation

$$h_1(N) = \sqrt{(x_N - x_g)^2 + (y_N - y_g)^2}$$ \hspace{1cm} \text{(L}_2 \text{ or Euclidean distance)}

$$h_2(N) = |x_N - x_g| + |y_N - y_g|$$ \hspace{1cm} \text{(L}_1 \text{ or Manhattan distance)}

Informed/Heuristic Search

- **Idea**: Give the search algorithm hints
- **Heuristic function**: $h(x)$
- $h(x) = \text{estimate of cost to goal from } x$
- If $h(x)$ is 100% accurate, then we can find the goal in $O(bd)$ time

- How do we use this?
Greedy Best First Search

- Expand node with lowest h(x)
- (Implement priority queue on h)
- Optimal if h(x) is 100% correct
- How can we get into trouble with this?

What Price Greed?

What’s broken with greedy search?
Best-First ≠ Efficiency

Local-minimum problem

\[f(N) = h(N) = \text{straight distance to the goal} \]

A*

- Path cost so far: \(g(x) \)
- Total cost estimate: \(f(x) = g(x) + h(x) \)
- Maintain frontier as a priority queue (on \(f \))
- \(O(bd) \) time if \(h \) is 100% accurate
- We want \(h \) to be an admissible heuristic
- Admissible: never overestimates cost
- Why admissible?
 (guarantees optimality, completeness of A*)
8-Puzzle Heuristics

- $h_1(N)$ = number of misplaced tiles = 6 is admissible

- $h_2(N)$ = sum of the (Manhattan) distances of every tile to its goal position

 $= 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13$

 is ???
8-Puzzle Heuristics

- \(h_1(N) \) = number of misplaced tiles = 6 is admissible
- \(h_2(N) \) = sum of the (Manhattan) distances of every tile to its goal position
 \[2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13 \]
 is admissible

STATE(N)	Goal state
5 8
4 2 1
7 3 6

13

Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = \(\sqrt{2} \)

\[h_1(N) = \sqrt{(x_N - x_g)^2 + (y_N - y_g)^2} \] is admissible
Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = $\sqrt{2}$

$h_2(N) = |x_N - x_g| + |y_N - y_g|$ is ???

$h^*(l) = 4\sqrt{2}$
$h_3(l) = 8$

is admissible if moving along diagonals is not allowed, and not admissible otherwise
Robot Navigation

\[f(N) = h(N) \text{, with } h(N) = \text{Manhattan distance to the goal} \]

(greedy, not A*)
Robot Navigation

\[f(N) = h(N), \text{ with } h(N) = \text{Manhattan distance to the goal} \]
\(\text{ (greedy, not A*)} \)

<table>
<thead>
<tr>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Robot Navigation

\[f(N) = g(N)+h(N), \text{ with } h(N) = \text{Manhattan distance to goal} \]
\(\text{ (A*)} \)

<table>
<thead>
<tr>
<th>8+3</th>
<th>7+4</th>
<th>6+3</th>
<th>5+6</th>
<th>4+7</th>
<th>3+8</th>
<th>2+9</th>
<th>3+10</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7+2</td>
<td>5+6</td>
<td>4+7</td>
<td>3+8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>6+1</td>
<td>3</td>
<td>2+9</td>
<td>1+10</td>
<td>1+100+11</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>7+0</td>
<td>6+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>8+1</td>
<td>7+2</td>
<td>6+3</td>
<td>5+4</td>
<td>4+5</td>
<td>3+6</td>
<td>2+7</td>
<td>3+8</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
Some A* Properties

- Admissibility implies \(h(x) = 0 \) if \(x \) is a goal state
- Above implies \(f(x) = \text{cost to goal if } x \) is a goal state and \(x \) is popped off the queue

- What if \(h(x) = 0 \) for all \(x \)?
 - Is this admissible?
 - What does the algorithm do?

Result #1

A* is complete and optimal

[This result holds if nodes revisiting states are not discarded – otherwise you might a shortcut and then discard it.]
Proof (1/2)

• If a solution exists, A* terminates and returns a solution

- For each node N on the frontier,
 \[f(N) = g(N) + h(N) \geq g(N) \geq d(N) \times \epsilon, \]
 where \(d(N) \) is the depth of N in the tree

• As long as A* hasn’t terminated, a node K on the frontier lies on a solution path
Proof (1/2)

- If a solution exists, A* terminates and returns a solution
 - For each node N on the frontier, \(f(N) = g(N) + h(N) \geq g(N) \geq d(N) \times \epsilon \), where \(d(N) \) is the depth of \(N \) in the tree
 - As long as A* hasn’t terminated, a node \(K \) on the frontier lies on a solution path
 - Since each node expansion increases the length of one path, \(K \) will eventually be selected for expansion, unless a solution is found along another path

Proof (2/2)

- Whenever A* chooses to expand a goal node, the path to this node is optimal
 - \(C^* \) = cost of the optimal solution path
 - \(G' \): non-optimal goal node in the frontier
 \(f(G') = g(G') + h(G') = g(G') > C^* \)
 - A node \(K \) in the frontier lies on an optimal path:
 \(f(K) = g(K) + h(K) \leq C^* \)
 - So, \(G' \) will not be selected for expansion
What to do with revisited states?

The heuristic h is clearly admissible

If we discard this new node, then the search algorithm expands the goal node next and returns a non-optimal solution.
• Not harmful to discard a node revisiting a state if cost of the new path state is \geq cost of previous path
 [so, in particular, one can discard a node if it re-visits a state already visited by one of its ancestors]

• If A* pushes revisited states, it remains optimal, but states may be re-visited multiple times
 [the size of the search tree can be exponential in number of visited states]

• Fortunately, for a large family of admissible heuristics – consistent heuristics – there is a much more efficient way to handle revisited states

Consistent Heuristic

• An admissible heuristic h is consistent (or monotone) if for each node N and each child N' of N: $h(N) \leq c(N,N') + h(N')$

 ➔ Intuition: a consistent heuristic becomes more precise as we get deeper in the search tree
Consistency Violation

If \(h \) tells us that \(N \) is 100 units from the goal, then moving from \(N \) along an arc costing 10 units should **not** lead to a node \(N' \) that \(h \) estimates to be 10 units away from the goal.

\[h(N) = 100 \]
\[h(N') = 10 \]
\[c(N, N') = 10 \]

(triangle inequality violation)

Consistent Heuristic
(alternative definition)

- A heuristic \(h \) is **consistent** (or monotone) if
 1. for each node \(N \) and each child \(N' \) of \(N \):
 \[h(N) \leq c(N, N') + h(N') \]
 2. for each goal node \(G \):
 \[h(G) = 0 \]

A consistent heuristic w/ \(h(G) = 0 \) is also admissible.
Admissibility and Consistency

- A consistent heuristic with $h(G)=0$ is also admissible.

- An admissible heuristic may not be consistent, but many admissible heuristics are.

8-Puzzle

- $h_1(N) = \text{number of misplaced tiles}$
- $h_2(N) = \text{sum of the (Manhattan) distances of every tile to its goal position}$

are both consistent (why?)
Robot Navigation

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = \(\sqrt{2} \)

\[h_1(N) = \sqrt{(x_N - x_g)^2 + (y_N - y_g)^2} \] is consistent

\[h_2(N) = |x_N - x_g| + |y_N - y_g| \] is consistent if moving along diagonals is not allowed, and not consistent otherwise

Result #2

- If h is consistent, then whenever A* expands a node, it has already found an optimal path to this node’s state
Proof (1/2)

1. Consider a node N and its child N’
 Since h is consistent: \(h(N) \leq c(N,N’) + h(N’) \)
 \[
 f(N) = g(N) + h(N) \leq g(N) + c(N,N’) + h(N’) = f(N’)
 \]
 So, f is non-decreasing along any path

Proof (2/2)

2. If a node K is selected for expansion, then any other node N in the frontier has \(f(N) \geq f(K) \)
 • If one node N lies on another path to the state of K, the cost of this other path is no smaller than that of the path to K:
 \[
 f(N’) \geq f(N) \geq f(K) \quad \text{and} \quad h(N’) = h(K)
 \]
 So, \(g(N’) \geq g(K) \)
2. If a node K is selected for expansion, then any other node N in the fringe verifies $f(N) \geq f(K)$.

- If one node N lies on another path to the state of K, the cost of this other path is no smaller than that of the path to K: $f(N') \geq f(N) \geq f(K)$ and $h(N') = h(K)$.
 So, $g(N') \geq g(K)$.

Result #2

If h is consistent, then whenever A* expands a node, it has already found an optimal path to this node's state.

Implication of Result #2

The path to N is the optimal path to S. N_2 can be discarded.
Revisited States with Consistent Heuristic (Modified Search Algorithm #3)

- When a node is expanded, store its state into VISITED
- When a new node \(N' \) is generated:
 - If \(\text{STATE}(N') \) is in VISITED, discard \(N' \)
 - If there exists a node \(N'' \) in the frontier such that \(\text{STATE}(N'') = \text{STATE}(N') \), discard the node – \(N' \) or \(N'' \) with the largest \(f \) (or, equivalently, \(g \))

Not as important – can safely ignore these checks and just push onto the queue – Why?

Not as important – can safely ignore these checks and just push onto the queue – Why?

1) No shortcuts
2) Let queue handle second case

Heuristic Accuracy

- Let \(h_1 \) and \(h_2 \) be two consistent heuristics such that for all nodes \(N \):
 \[h_1(N) \leq h_2(N) \]
- \(h_2 \) is said to be more accurate (or more informed) than \(h_1 \)

- \(h_1(N) = \) number of misplaced tiles
- \(h_2(N) = \) sum of distances of every tile to its goal position

- \(h_2 \) is more accurate than \(h_1 \)
Result #3

- Let h_2 be more accurate than h_1
- Let A_1^* be A^* using h_1
 and A_2^* be A^* using h_2
- Whenever a solution exists, all the nodes expanded by A_2^*, except possibly for some nodes such that
 $f_1(N) = f_2(N) = C^*$ (cost of optimal solution)
 are also expanded by A_1^*

Proof

- C^* = cost of optimal solution
- Every node N such that $f(N) < C^*$ is eventually expanded. No node N such that $f(N) > C^*$ is ever expanded
- Every node N such that $h(N) < C^*-g(N)$ is eventually expanded. So, every node N such that $h_2(N) < C^*-g(N)$ is expanded by A_2^*. Since $h_1(N) \leq h_2(N)$, N is also expanded by A_1^*
- If there are several nodes N such that $f_1(N) = f_2(N) = C^*$ (such nodes include the optimal goal nodes, if there exists a solution), A_1^* and A_2^* may or may not expand them in the same order (until one goal node is expanded)
How to create good heuristics?

- By solving relaxed problems at each node
- In the 8-puzzle, the sum of the distances of each tile to its goal position (h_2) corresponds to solving 8 simple problems:

 \[
 d_i \text{ is the length of the shortest path to move tile } i \text{ to its goal position, ignoring the other tiles, e.g., } d_5 = 2
 \]

 \[
 h_2(N) = \sum_{i=1}^{8} d_i(N)
 \]

- It ignores negative interactions among tiles

Can we do better?

- For example, we could consider two more complex relaxed problems:

 \[
 d_{1234} = \text{length of the shortest path to move tiles 1, 2, 3, and 4 to their goal positions, ignoring the other tiles}
 \]

- \(h = d_{1234} + d_{5678} \) [disjoint pattern heuristic]
- How to compute d_{1234} and d_{5678}?
Can we do better?

• For example, we could consider two more complex relaxed problems:

\[h = d_{1234} + d_{5678} \]

[disjoint pattern heuristic]

• These distances are pre-computed and stored

[Each requires generating a tree of 3,024 nodes/states (breadth-first search)]

Several order-of-magnitude speedups for the 15- and 24-puzzle (see R&N)

Effective Branching Factor

• Used as a measure of the effectiveness of \(h \)

• Let \(n \) be the total number of nodes expanded by A* for a particular problem and \(d \) the depth of the solution

• The effective branching factor \(b^* \) is defined by fitting: \(n = 1 + b^* + (b^*)^2 + ... + (b^*)^d \)
Experimental Results
(see R&N for details)

• 8-puzzle with:
 – $h_1 =$ number of misplaced tiles
 – $h_2 =$ sum of distances of tiles to their goal positions

• Random generation of many problem instances

• Average effective branching factors (number of expanded nodes):

<table>
<thead>
<tr>
<th>d</th>
<th>IDDFS</th>
<th>A_1^*</th>
<th>A_2^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.45</td>
<td>1.79</td>
<td>1.79</td>
</tr>
<tr>
<td>6</td>
<td>2.73</td>
<td>1.34</td>
<td>1.30</td>
</tr>
<tr>
<td>12</td>
<td>2.78 (3,644,035)</td>
<td>1.42 (227)</td>
<td>1.24 (73)</td>
</tr>
<tr>
<td>16</td>
<td>--</td>
<td>1.45</td>
<td>1.25</td>
</tr>
<tr>
<td>20</td>
<td>--</td>
<td>1.47</td>
<td>1.27</td>
</tr>
<tr>
<td>24</td>
<td>--</td>
<td>1.48 (39,135)</td>
<td>1.26 (1,641)</td>
</tr>
</tbody>
</table>

Memory-bounded Search: Why?

• We run out of memory before we run out of time

• Problem: Need to remember entire search horizon

• Solution: Remember only a partial search horizon

• Issue: Maintaining optimality, completeness
• Issue: How to minimize time penalty
• Details: Not emphasized in class, but worth a skim so that you are aware of the issues
Iterative Deepening A* (IDA*)

• Idea: Reduce memory requirement of A* by applying cutoff on values of f
• Consistent heuristic function h
• Algorithm IDA*:
 – Initialize cutoff to f(initial-node)
 – Repeat:
 • Perform depth-first search by expanding all nodes N such that f(N) ≤ cutoff
 • Reset cutoff to smallest value f of non-expanded (leaf) nodes

Advantages/Drawbacks of IDA*

• Advantages:
 – Still complete and optimal
 – Requires less memory than A*
 – Avoids the overhead to sort the frontier (priority queue)
• Drawbacks:
 – Discards a lot of information when it restarts
 – Available memory is poorly used
 – Non-unit costs?
RBFS

- Recursive best first search
- Objective: Linear space without discarding as much information as IDA*

- Idea: Remember best alternative
- Rewind, try alternatives if “best first” path gets too expensive
- Remember costs on the way back up

Assume $h=1$, initially along this path.

Replace with $f=11$

Return to best alternative

Problem: Thrashing!
SMA*

- Idea: Use all of available memory
- Discard the worst leaf when memory starts to run out, to make room for new leaves
- Values get backed up to parents
- Optimal if solution fits in memory
- Complete
- Thrashing still possible

Recap

- Heuristics change how we think about search
- A* is optimal, complete
- Dramatic improvements in efficiency possible with good heuristics

- Many extensions possible, e.g., dealing with limited memory