Markov Decision Processes (MDPs)

Ron Parr
CompSci 370
Department of Computer Science
Duke University

With thanks to Kris Hauser for some slides

The Winding Path to Reinforcement Learning

- Decision Theory
- Markov Decision Processes
- Reinforcement Learning
- Descriptive theory of optimal behavior
- Mathematical/Algorithmic realization of Decision Theory
- Application of learning techniques to challenges of MDPs with numerous or unknown parameters
Swept under the rug today

- Utility of money (assumed 1:1)
- How to determine costs/utilities
- How to determine probabilities

Playing a Game Show

- Assume series of questions
 - Increasing difficulty
 - Increasing payoff
- Choice:
 - Accept accumulated earnings and quit
 - Continue and risk losing everything
- “Who wants to be a millionaire?”
State Representation

Dollar amounts indicate the payoff for getting the question right.

Probabilistic Transitions on Attempt to Answer

Downward green arrows indicate the choice to exit the game.

N.B.: These exit transitions should actually correspond to states.

Green indicates profit at exit from game.

Making Optimal Decisions

• Work backwards from future to present

• Consider $50,000 question
 – Suppose $P(\text{correct}) = \frac{1}{10}$
 – $V(\text{stop}) = $11,100
 – $V(\text{continue}) = 0.9 \times $0 + 0.1 \times $61.1K = $6.11K$

• Optimal decision stops
Working Backwards

V=$3,749 V=$4,166 V=$5,555 V=$11.1K

Dealing with Loops

Suppose you can pay $1000 (from any losing state) to play again
From Policies to Linear Systems

• Suppose we always pay until we win.
• What is value of following this policy?

\[
V(s_0) = 0.10(-1000 + V(s_0)) + 0.90V(s_1) \\
V(s_1) = 0.25(-1000 + V(s_0)) + 0.75V(s_2) \\
V(s_2) = 0.50(-1000 + V(s_0)) + 0.50V(s_3) \\
V(s_3) = 0.90(-1000 + V(s_0)) + 0.10(61100)
\]

And the solution is...

\[
\begin{align*}
V &= \$3,749 \\
\Rightarrow V &= \$32,479 \\
V &= \$4,166 \\
\Rightarrow V &= \$32,58K \\
V &= \$5,555 \\
\Rightarrow V &= \$32,95K \\
V &= \$11.11K \\
\Rightarrow V &= \$34,43K \\
\end{align*}
\]

Is this optimal?
How do we find the optimal policy?
The MDP Framework

- State space: S
- Action space: A
- Transition function: P
- Reward function: $R(s,a,s')$ or $R(s,a)$ or $R(s)$
- Discount factor: γ
- Policy: $\pi(s) \rightarrow a$

Objective: Maximize expected, discounted return (decision theoretic optimal behavior)

Applications of MDPs

- AI/Computer Science
 - Robotic control (Koenig & Simmons, Thrun et al., Kaelbling et al.)
 - Air Campaign Planning (Meuleau et al.)
 - Elevator Control (Barto & Crites)
 - Computation Scheduling (Zilberstein et al.)
 - Control and Automation (Moore et al.)
 - Spoken dialogue management (Singh et al.)
 - Cellular channel allocation (Singh & Bertsekas)
Applications of MDPs

• Economics/Operations Research
 – Fleet maintenance (Howard, Rust)
 – Road maintenance (Golabi et al.)
 – Packet Retransmission (Feinberg et al.)
 – Nuclear plant management (Rothwell & Rust)
 – Debt collection strategies (Abe et al.)
 – Data center management (DeepMind)

• EE/Control
 – Missile defense (Bertsekas et al.)
 – Inventory management (Van Roy et al.)
 – Football play selection (Patek & Bertsekas)

• Agriculture
 – Herd management (Kristensen, Toft)

• Other
 – Sports strategies
 – Board games
 – Video games
The Markov Assumption

• Let S_t be a random variable for the state at time t

$$P(S_t | A_{t-1}S_{t-1},...,A_0S_0) = P(S_t | A_{t-1}S_{t-1})$$

• Markov is special kind of conditional independence

• Future is independent of past given current state, action

Understanding Discounting

• Mathematical motivation
 – Keeps values bounded
 – What if I promise you $0.01 every day you visit me?

• Economic motivation
 – Discount comes from inflation
 – Promise of $1.00 in future is worth $0.99 today

• Probability of dying (losing the game)
 – Suppose ε probability of dying at each decision interval
 – Transition w/prob ε to state with value 0
 – Equivalent to $1-\varepsilon$ discount factor
Discounting in Practice

• Often chosen unrealistically low
 – Faster convergence of the algorithms we’ll see later
 – Leads to slightly myopic policies

• Can reformulate most algs. for avg. reward
 – Mathematically uglier
 – Somewhat slower run time

Value Determination

Determine the value of each state under policy π

$$V^\pi(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s'|s, \pi(s))V^\pi(s')$$

Bellman Equation for a fixed policy π

$$V^\pi(s_1) = 1 + \gamma(0.4V^\pi(s_2) + 0.6V^\pi(s_3))$$
Matrix Form

\[
P^\pi = \begin{pmatrix}
P(s_1 | s_1, \pi(s_1)) & P(s_2 | s_1, \pi(s_1)) & P(s_3 | s_1, \pi(s_1)) \\
P(s_1 | s_2, \pi(s_2)) & P(s_2 | s_2, \pi(s_2)) & P(s_3 | s_2, \pi(s_2)) \\
P(s_1 | s_3, \pi(s_3)) & P(s_2 | s_3, \pi(s_3)) & P(s_3 | s_3, \pi(s_3))
\end{pmatrix}
\]

\[
V^\pi = \gamma P^\pi V^\pi + R^\pi
\]

This is a generalization of the game show example from earlier.

How do we solve this system efficient? Does it even have a solution?

Solving for Values

\[
V^\pi = \gamma P^\pi V^\pi + R^\pi
\]

For moderate numbers of states we can solve this system exactly:

\[
V^\pi = (I - \gamma P^\pi)^{-1} R^\pi
\]

Guaranteed invertible because \(\gamma P^\pi\)
has spectral radius <1
Iteratively Solving for Values

\[V^\pi = \gamma P^\pi V^\pi + R^\pi \]

For larger numbers of states we can solve this system indirectly:

\[V^\pi_{i+1} = \gamma P^\pi V^\pi_i + R^\pi \]

Guaranteed convergent because \(\gamma P^\pi \) has spectral radius <1

Establishing Convergence

- Eigenvalue analysis
- Monotonicity
 - Assume all values start pessimistic
 - One value must always increase
 - Can never overestimate
 - Easy to prove
- Contraction analysis...
Contraction Analysis

• Define maximum norm

\[\|V\|_\infty = \max_i |V[i]| \]

• Consider two value functions \(V^a \) and \(V^b \) each at iteration 1:

\[\|V_1^a - V_1^b\|_\infty = \epsilon \]

• WLOG say

\[V_1^a \leq V_1^b + \epsilon \] (Vector of all \(\epsilon \)'s)

Contraction Analysis Contd.

• At next iteration for \(V^b \):

\[V_2^b = R + \gamma PV_1^b \]

• For \(V^a \)

\[V_2^a = R + \gamma P(V_1^a) \leq R + \gamma PV_1^b + \gamma \tilde{\epsilon} = R + \gamma PV_1^b + \gamma \tilde{\epsilon} \]

• Conclude:

\[\|V_2^a - V_2^b\|_\infty \leq \gamma \epsilon \]
Importance of Contraction

• Any two value functions get closer

• True value function V^* is a fixed point (value doesn’t change with iteration)

• Max norm distance from V^* decreases \textit{dramatically} quickly with iterations

\[
\|V_0 - V^*\|_{\infty} = \varepsilon \rightarrow \|V_n - V^*\|_{\infty} \leq \gamma^n \varepsilon
\]

Finding Good Policies

Suppose an expert told you the “true value” of each state:

\[
V(S1) = 10 \quad V(S2) = 5
\]
Improving Policies

- How do we get the optimal policy?
- If we knew the values under the optimal policy, then just take the optimal action in every state
- How do we define these values?
- Fixed point equation with choices (Bellman equation):

\[V^*(s) = \max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)V^*(s') \]

Decision theoretic optimal choice given \(V^* \)
If we know \(V^* \), picking the optimal action is easy
If we know the optimal actions, computing \(V^* \) is easy
How do we compute both at the same time?

Value Iteration

We can’t solve the system directly with a max in the equation
Can we solve it by iteration?

\[V_{i+1}(s) = \max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)V_i(s') \]

- Called value iteration or simply successive approximation
- Same as value determination, but we can change actions

- Convergence:
 - Can’t do eigenvalue analysis (not linear)
 - Still monotonic
 - Still a contraction in max norm (exercise)
 - Converges quickly
Robot Navigation Example

- The robot (shown ▲) lives in a world described by a 4x3 grid of squares with square (2,2) occupied by an obstacle.
- A state is defined by the square in which the robot is located: (1,1) in the above figure.
- → 11 states

Action (Transition) Model

- In each state, the robot’s possible actions are {U, D, R, L}.
- For each action:
 - With probability 0.8 the robot does the right thing (moves up, down, right, or left by one square).
 - With probability 0.1 it moves in a direction perpendicular to the intended one.
 - If the robot can’t move, it stays in the same square.
- [This model satisfies the Markov condition]
Action (Transition) Model

- In each state, the robot's possible actions are \{U, D, R, L\}
- For each action:
 - With probability 0.8 the robot does the right thing (moves up, down, right, or left by one square)
 - With probability 0.1 it moves in a direction perpendicular to the intended one
 - If the robot can't move, it stays in the same square

[This model satisfies the Markov condition]

Terminal States, Rewards, and Costs

- Two terminal states: (4,2) and (4,3)
- Rewards:
 - \(R(4,3) = +1 \) [The robot finds gold]
 - \(R(4,2) = -1 \) [The robot gets trapped in quicksand]
 - \(R(s) = -0.04 \) in all other states

[“terminal” states
Not part of formal
MDP specification.
Usually handled by
forcing state to have a fixed value, e.g. +1]

- This example (from the Russell & Norvig text) assumes no discounting (\(\gamma = 1 \))
- Discussion: Is this a good modeling decision?
(Stationary) Policy

- A stationary policy is a complete map $\pi: \text{state} \rightarrow \text{action}$
- For each non-terminal state it recommends an action, independent of when and how the state is reached
- Under the Markov and infinite horizon assumptions, the optimal policy π^* is necessarily a stationary policy

 [The best action in a state does not depend on the past]

The optimal policy tries to avoid "dangerous" state (3,2)
Optimal Policies for Various R(s)

- If s is terminal:
 \[V(s) = R(s) \]

- If s is non-terminal:
 \[V(s) = R(s) + \max_{a \in \text{App}(s)} \sum_{s' \in \text{Succ}(s, a)} P(s'|s, a)V(s') \]

\[\pi^*(s) = \arg \max_{a \in \text{App}(s)} \sum_{s' \in \text{Succ}(s, a)} P(s'|s, a)V(s') \]

The utility of s depends on the utility of other states s' (possibly, including s), and vice versa.

Bellman Equation

- R(s) = -0.04
- R(s) = -2
- R(s) = -0.01
- R(s) > 0

[Bellman equation]
Value Iteration Applied

1. Initialize the utility of each non-terminal states to $V_0(s) = 0$

2. For $t = 0, 1, 2, \ldots$ do

$$V_{t+1}(s) = R(s) + \max_{a \in \text{Act}(s)} \sum_{s' \in S(s,a)} P(s'|s,a)V_t(s')$$

for each non-terminal state s

State Utilities/Values

- The utility of a state s is the maximal expected amount of reward that the robot will collect from s and future states by executing some action in each encountered state, until it reaches a terminal state (infinite horizon).

- Under the Markov and infinite horizon assumptions, the utility of s is independent of when and how s is reached.
 [It only depends on the possible sequences of states after s, not on the possible sequences before s]
Convergence of Value Iteration

Properties of Value Iteration

- VI converges to V^* ($\| \cdot \|_\infty$ from V^* shrinks by γ factor each iteration)
- Converges to optimal policy
- Why? (Because we figure out V^*, optimal policy is argmax)
- Optimal policy is stationary (i.e. Markovian – depends only on current state)
- Why? (Because we are summing utilities. Thought experiment: Suppose you think it’s better to change actions the second time you visit a state. Why didn’t you just take the best action the first time?)
Greedy Policy Construction

Let’s name the action that looks best WRT V:

$$
\pi_v(s) = \arg \max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)V(s')
$$

$\pi_v = \text{greedy}(V)$
Bootstrapping: Policy Iteration

Idea: Greedy selection is useful even with suboptimal V

Guess $\pi_v = \pi_0$

\[V_\pi = \text{value of acting on } \pi \]

(solve linear system)

\[\pi_v \leftarrow \text{greedy}(V_\pi) \]

Guaranteed to find optimal policy

Usually takes very small number of iterations

Computing the value functions is the expensive part

Comparing VI and PI

- **VI**
 - Value changes at every step
 - Policy may change before exact value of policy is computed
 - Many relatively cheap iterations

- **PI**
 - Alternates policy/value updates
 - Solves for value of each policy *exactly*
 - Fewer, slower iterations (need to invert matrix)

- **Convergence**
 - Both are contractions in max norm
 - PI is *shockingly* fast (small number of iterations) in practice
Computational Complexity

- VI and PI are both contraction mappings w/rate γ
 (we didn’t prove this for PI in class)
- VI costs less per iteration
- For n states, a actions PI tends to take $O(n)$ iterations in practice
 - Recent results indicate $\sim O(n^2a/(1-\gamma))$ worst case
 - Interesting aside: Biggest insight into PI came ~ 50 years after the algorithm was introduced

A Unified View of Value Iteration and Policy Iteration
Notation

- Update for for a fixed policy – definition of T^π operator (matrix-vector form):
 $$T^\pi V \equiv R^\pi + \gamma P^\pi V$$

- Update with policy improvement – definition of the T operator:
 $$TV(s) = \max_a r(s, a) + \gamma \sum_{s'} P(s' | s, a)V(s')$$

Value Determination

- For 0 steps
 $$V_0 = R^\pi$$

- For i steps
 $$V_i = T^\pi V_{i-1} = (T^\pi)^i R^\pi$$

- Infinite horizon
 $$\lim_{i \to \infty} V_i = (T^\pi)^\infty R^\pi = (1 - \gamma P^\pi)^{-1} R^\pi = V^\pi$$
Value Iteration

• For 0 steps \(V_0 = R \) (If R depends on a, pick a with the highest immediate reward)

• For i steps \(V_i = TV_{i-1} = T^iR \)

• Infinite horizon \(\lim_{i \to \infty} V_i = T^\infty R = TV^* = V^* \)

Modified Policy Iteration

• Guess \(V_0 \) (usually just R), and \(\pi \)
• i=1
• Repeat until convergence*
 – For j=1 to n
 • \(V_i = T^nV_{i-1} \)
 • \(i = i+1 \)
 – \(\pi = \text{greedy}(V_{i-1}) \)

• Special cases: n=1 (VI), n\(\to \infty \) (PI)
MDP Limitations →
Reinforcement Learning

• MDP operate at the level of states
 – States = atomic events
 – We usually have exponentially (or infinitely) many of these
• We assume P and R are known

• Machine learning to the rescue!
 – Infer P and R (implicitly or explicitly from data)
 – Generalize from small number of states/policies