Planning

CPS 370
Ron Parr

Some Actual Planning Applications

• Used to fulfill mission objectives in NASA’s Deep Space One (Remote Agent)
 – Particularly important for space operations due to latency

• Also used for Rovers
 – Finally(!) used onboard on curiosity:

• Aircraft assembly schedules
• Logistics for the U.S. Navy
• Observation schedules for Hubble space telescope
• Scheduling of operations in an Australian beer factory
Scheduling

• Many “planning” problems are scheduling problems

• Scheduling can be viewed as a generalization of the planning problem to include resource constraints
 – Time & Space
 – Money & Energy

• Many principles from regular planning generalize, but some extensions (not discussed here) are used

Continuous Motion Planning

• Another variation on planning involves planning in continuous state spaces for, e.g., robots

• Main challenge is curse of dimensionality

• Can’t discretize high dimensional spaces by brute force

• Research focuses on sampling, more clever discretization approaches than brute force, exploiting hardware and domain features

• See: https://youtu.be/u4snHh_S_Ao
Characterizing Discrete Planning Problems

• Start state (group of states)
• Goal – almost always a group of states
• Actions

• Objective: Plan = A sequence of actions that is guaranteed to achieve the goal.

• Like everything else, can view planning as search...
• So, how is this different from generic search?

What makes planning special?

• States typically specified by a set of relations or propositions:
 – On(solar_panels, cargo_floor)
 – arm_broken
• Goal is almost always a set
 – Typically care about a small number of things:
 • at(Ron, airport),
 • parked_in(X, car_of(Ron))
 • airport_parking_stall(X)
 – Many things are irrelevant
 • parked_in(Y, car_of(Bill))
 • adjacent(X,Y)
• Branching factor is large
Planning Algorithms

- Not the “hot” thing in AI now, but still active, important
- Regular competitions pit different algorithms against each other on suites of challenge problems
 http://www.icaps-conference.org/index.php/Main/Competitions

- Algorithms compete in different categories
 - Classical vs. probabilistic vs. temporal
 - Optimal vs. Satisficing vs. Bounded cost

- No clearly superior method has emerged

PDDL – A Language for Planning Problems

- Actions have a set of preconditions and effects
- Think of the world as a database
 - Database stores true facts about the world – on(block, table)
 - Preconditions specify what must be true in the database for the action to be applied
 - Effects specify which things will be changed in the database if the action is taken

- NB: PDDL supersedes an earlier, similar representation called STRIPS
move(obj, from, to)

- **Preconditions**
 - clear(obj)
 - on(obj, from)
 - clear(to)

- **Effects**
 - **Add**
 - on(obj, to)
 - clear(from)
 - **Delete**
 - on(obj, from)
 - clear(to)

*STRIPS had a separate delete category. PDDL implements deletions as negative effects, but the difference is primarily syntactic.

Limitations of PDDL

- Assumes that a small number of things change with each action
 - Dominoes ☺️
 - Pulling out the bottom block from a stack ☺️

- Preconditions and effects are conjunctions

- Can support quantification (which can fix the domino problem) but not always implemented for efficiency reasons

- Typically (though not necessarily) implements a “closed world” assumption - We only assert that which is true; can’t assert that which is false. (Negative effects typically delete facts from the database, rather than asserting that things are false.)
Why Have Limitations?

• Planning languages are designed to allow fast search

• If preconditions were arbitrary logical statements, search might require proving theorems just to figure out if an action can be used

Planning Actions vs. Search Actions

• Plan actions are really action schemata
• Every PDDL rule specifies a huge number of ground-level actions
• Consider move(obj, from, to)
 – Assume n objects in the world
 – This action alone specifies O(n^3) ground actions
 – Planning tends to have a very large action space
• Compare with CSPs
Planning vs. CSPs

- Both have large action spaces
- CSPs are atemporal
- CSP: Effects of actions (assignments) are implicit
- Planning: Path matters - Knowing that solution exists isn’t sufficient

How hard is planning?

- Planning is NP hard
- We use a technique called reduction to show that planning is at least as hard (up to polynomial factor) as graph coloring
Graph Coloring Reduction

- Assumptions about planning language:
 - No negations allowed
 - OK to test equality

- Given a graph coloring problem, what is our goal?
- Goal is: colored(v_i) for all nodes v_i
- Initial state is:
 - uncolored(v_i) for all nodes v_i
 - color(v_i,nil) for all nodes v_i
- What are our actions?
 - color(V,color)

Coloring Actions color(v_i,c)

- One action for each v_i
- Preconditions
 - uncolored(v_i)
 - colored(v_i',c')
 - c!=c'
- Effects
 - Add
 - colored(v_i)
 - color(v_i,c)
 - Delete
 - uncolored(v_i)

Pair of preconditions for each neighbor e.g., colored(v_i',c''), c!=c'' if v_i has two neighbors
What if We Can’t test Equality?

• Create more actions
• For each node, with m neighbors (and for each color c):
 – Create mk actions
 – Each action corresponds to legal possible combination
 of neighbor colors that would permit use of color c
• How expensive is this?
 – Exponential in k (which we view as a constant)
 – Polynomial in n (m<n)

What this Does

• Actions correspond to coloring graph nodes
• Only legal assignments are allowed
• Plan exists iff graph is colorable
• Claim: Planning is at least as hard as graph coloring,
 i.e., NP-hard
What just happened?

• Example of a general technique: reduction

A instance \rightarrow \text{Poly-time xformation} \rightarrow B Solver

poly time A solver if B is poly time

• Powerful technique to compare the difficulty of two problems

How to Think About This

• If planning can be solved in polynomial time, then graph coloring can be solved in poly time
• $O(poly(n)+poly(n))=O(poly(n))$

• If graph coloring can’t be solved in poly time, then neither can planning
Planning Can be Harder than Graph Coloring

- Consider the towers of Hanoi:
 - http://towersofhanoi.info/Animate.aspx
 - PDDL actions are the disc moving actions
- Requires exponential number of moves

- Graph coloring can be verified in poly time
- Planning may require an **exponential size demonstration** that a plan is possible

Should plan size worry us?

- What if problem has exponential solution?
- In most cases, impractical to execute (or even write down) the solution, so why worry?

- May be artifact of representation
 - Towers of Hanoi solution can be expressed as a simple recursive program
 - Nice if planner could find such programs

- Common AI limitation: **Discovering new representations**
Planning Using Search

• Forward Search:
 – Blind forward search is problematic because of the huge branching factor
 – Some success using this method with carefully chosen action pruning techniques (not covered in class)

• Backward Search:
 – Tends to focus search on relevant terms
 – Called “Goal Regression” in the planning context

Why Doesn’t A* help with Forward Search?

• Natural heuristics can be misleading

• Making progress towards achieving one part of a complex objective might make it harder to achieve another part

• Sussman anomaly is a classic example of this
The Sussman Anomaly

Goal: clear(x), on(x,y), on(y,z)

When Simple Heuristics Fail

- Goal on(x,y), on(y,z)
- Does achieving one of these bring us closer to goal?
- What if we move y onto z first?
- What if we clear x by moving z onto y?
Backward Planning: Goal Regression

- Goal regression is a form of backward search from goals
- Basic principle goes back to Aristotle
- Embodied in earliest AI systems
 - GPS: General Problem Solver by Newell & Simon
- Cognitively plausible
- Idea:
 - Pick actions that achieve (some of) your goal
 - Make preconditions of these actions your new goal
 - Repeat until the goal set is satisfied by start state

Goal Regression Example

Regress on(x,z) through move(z,table,x)

New goal: clear(x)

Goal: on(x,z)
Facts About Goal Regression

• Elegant solution to the problem of backward search from multiple goal states
 – In planning, goal state is usually a set of states
 – Does backward search at the level of state sets
• Goal regression is sound and complete
• Can be more efficient than forward search unless forward search is guided by powerful heuristics

Summary of Traditional Planners

• Backward search methods are more focused gain efficiency by working with state sets

• Forward (traditional) search methods good when:
 – Search space was very narrow (only a small number of reasonable things to do, which prevented exponential growth in reachable search space)
 – Domain-specific knowledge could be used to narrow the search space with powerful heuristics
Modern Planners (Oversimplified)

• One family of approaches uses search techniques combined with powerful domain independent (and/or domain specific) heuristics that take into account interactions between actions over time (e.g. certain sequences of actions are impossible or likely to be unhelpful)

• Another family converts everything into a giant logic problem (SAT) and uses a generic solver

What’s Missing?

• As described, plans are “open loop”
• No provisions for:
 – Actions failing
 – Uncertainty about initial state
 – Observations

• Solutions:
 – Plan monitoring, replanning
 – Conformant/Sensorless planning
 – Contingency planning
Planning Under Uncertainty

• Probability distribution over possible outcomes?
 – Called: Planning under uncertainty, decision theoretic planning, Markov Decision Processes (MDPs)
 – Much more robust: Solution is a “universal plan”, i.e., a plan for all possible outcomes (monitoring and replanning are implicit)
 – Much more difficult computationally

• What if observations are unreliable?
 – Called: “Partial Observability”, Partially Observable MDPs (POMDPs)
 – Applications to medical diagnosis, defense, sensor planning
 – Way, way harder computationally