1. (14 pts) Complete or answer the following.

\[L_1 = \{abb, ac, a, b\}, \Sigma = \{a, b, c\} \]
\[L_2 = \{ac, aa\}, \Sigma = \{a, c\} \]
\[L_3 = (ab)^*c(c)^*, \Sigma = \{a, b, c\} \]
\[L_4 = \{w \in \Sigma^* | n_a(w) + n_b(w) = n_c(w)\}, \Sigma = \{a, b, c\} \]

(a) \(L_1 \cap L_2 = \{ac^3\} \)
(b) \(L_3 \cap L_4 = \{b^n c^{2n} | n \geq 1\} \)
(c) \(L_2 \circ L_2 = \{aaaa, aac, acaq, acac\} \)
(d) \(L_2 \times L_2 = \{aaaq, aacq, acaq, acac\} \)
(e) \(L_4 = \{w \in \Sigma^* | n_a(w) + n_b(w) = n_c(w)\} \)
(f) \(|2^{L_1}| = 16 \)
(g) \(L_2 - L_1 = \{aa\} \)

2. (22 pts) Answer TRUE or FALSE to each of the statements below.

(a) \(\{\} \in \{a, \{b\}\} \) (TRUE or FALSE?)
(b) Given a DFA M, if every state except the start state is a final state, then \(L(M) = \Sigma^* - \{\lambda\} \). (TRUE or FALSE?)
(c) If M is a DFA, then there exists an NPDA M’ such that \(L(M) = L(M') \) (TRUE or FALSE?)
(d) If G is a CFG with only 1 variable and two productions, then there exists a regular expression R such that \(L(G) = L(R) \). (TRUE or FALSE?)
(e) If G is a DCFG, then there exists an NPDA M such that \(L(G) = L(M) \). (TRUE or FALSE?)
(f) If G is a CFG that includes rules of the form $A \rightarrow \lambda$, then using the brute-force parser with a string that is not in $L(G)$ may never halt. (TRUE or FALSE?)

(g) The following grammar G is a regular grammar. (TRUE or FALSE?)

$$S \rightarrow aS \mid B$$
$$B \rightarrow bB \mid \lambda$$

(h) $L = \{w \in \Sigma^* \mid |w| \text{ is an even number} \}$ $\Sigma = \{a, b\}$. L is regular. (TRUE or FALSE?)

(i) $L = \{a^n b^m \mid n \text{ mod } 3 = 0, m > 10\}$, $\Sigma = \{a, b\}$. L is regular. (TRUE or FALSE?)

(j) $L = \{a^n b^m c^p \mid m > n + p, n > 0, p > 0\}$, $\Sigma = \{a, b, c\}$. L is regular. (TRUE or FALSE?)

(k) $L = \{w \in \Sigma^* \mid n_a(w) < n_b(w) \text{ and } n_b(w) \text{ is an odd number} \}$ $\Sigma = \{a, b\}$. L is regular. (TRUE or FALSE?)

3. (4 pts) Consider the following grammar with start variable S.

$$S \rightarrow aSBc \mid aB$$
$$B \rightarrow bB \mid \lambda$$

A) Give a right-most derivation for the string $aaabcc$.

$$S \Rightarrow aSBc \Rightarrow aScc \Rightarrow aSBcc \Rightarrow aaSBcc \Rightarrow aaSbBcc \Rightarrow aaSbbc \Rightarrow aaBbBc \Rightarrow aaBbcc \Rightarrow aaabcc$$

B) Give a parse tree for the string $aaabcc$
4. (5 pts) Write a CFG G for the following language:

$L = \{a^{2n}c^{3n}c \mid n > 0\}, \Sigma = \{a, b, c\}$.

For example, $aacbbbc \in L$.

$$G = (V, \Sigma, S, P)$$

$$V = \{S, A\}$$

$$P =$$

\[
S \rightarrow Ac \\
A \rightarrow aA bbb \mid aac bbb
\]
5. (8 pts) Draw a DFA for the following language. You do not have to show trap states (show the transition diagram, indicate the start state by a short arrow, and final states by double circles.)

$L = \{w \in \Sigma^* \mid n_b(w) \mod 3 = 2 \text{ and } w \text{ has the substring } aab\}, \Sigma = \{a, b\}.$

For example, $baab$, $baaba$, $aabaabbb$, and $baabbbbaa$ are in L.

States indicate how many remainder b's we have: 0, 1, or 2 and how much of aab we have.
6. (6 pts) Consider the following DFA.

a) Show states q1 and q6 are distinguishable with an appropriate string. Explain.

b) Give the states in the minimal state DFA (you do not need to show the arcs). Each state should indicate which states it represents from the original DFA. For example you could list one state as 0,1,2 if states 0, 1 and 2 in the original DFA can be combined to form a state in the minimal state DFA.
7. (10 pts) Consider $L = \{a^{2n} cb^{3n} \mid n > 0\}$, $\Sigma = \{a, b, c\}$. Draw the transition diagram for a nondeterministic pushdown automaton M that accepts L by final state. (Remember to identify the start state by an arrow and final states by double circles. Format of labels are a, b, cd where a is the symbol on the tape, b is the symbol on top of the stack that is popped, and cd are pushed onto the stack (with c on top of d). Z is on top of the stack when M starts.)

(a) First list 3 strings in L.
\[
aacbb, a^4 cb^6, a^6 cb^9
\]
(b) Now draw the transition diagram.

for every 2 a's, we put 3 a's on the stack
8. (6 pts) **Pumping Lemma:** Let L be an infinite regular language. \exists a constant $m > 0$ such that any $w \in L$ with $|w| \geq m$ can be decomposed into three parts as $w = xyz$ with

$$|xy| \leq m$$
$$|y| \geq 1$$
$$xy^iz \in L \text{ for all } i \geq 0$$

Use the Pumping Lemma to prove the language L below is not regular.

$L = \{w \in \Sigma^* \mid n_a(w) > 2 \times n_b(w) \}$ $\Sigma = \{a, b, c\}$.

Proof: (SHOW ALL STEPS! Some have been started for you.)

Assume L is regular

Choose $w = a^{2m+1}b^m$

Show there is no way to partition this string $w=xyz$ such that the properties of the pumping lemma hold.

partition $w=xyz$

$x=a^k$, $y=a^i$, $z=a^{2m+1-k}b^m$

for $i=0$ $xyiz = a^{2m+1-k}b^m \notin L$

$n_a(w) \neq 2 \times n_b(w)$

\implies contradiction

$\implies L$ is not regular
9. (8 pts) Consider the following property, RemoveSomeAA. If \(L \) is a regular language, then \(\text{RemoveSomeAA}(L) \) = strings from \(L \) that have at least two adjacent a’s, and one such occurrence of \(aa \) is removed. If there is a string \(w \) in \(L \) that does not have two adjacent a’s in the string, then that does not put a string in \(\text{RemoveSomeAA}(L) \).

For example, if \(aabaabaa \) is in \(L \), then \(baabaa \) is in \(\text{RemoveSomeAA}(L) \). (If a different \(aa \) is replaced you could have \(aabbaa \) and \(aabaab \) also in \(\text{RemoveSomeAA}(L) \)).

If \(abab \) is in \(L \), then \(abab \) does not generate a string in \(\text{RemoveSomeAA}(L) \).

Start the proof to show that \(\text{RemoveSomeAA}(L) \) is a regular language. You need to explain how to convert a DFA \(M \) for \(L \) into a DFA or NFA that represents the language \(\text{RemoveSomeAA}(L) \).

Let \(M \) be a DFA for \(L \). \(M^1 + M^2 \) are copies of \(M \).
Construct \hat{M} to be an NFA for $\text{RemoveSomeAA}(L)$, using M, M', and M''. Start state of \hat{M} is start state for M.

Changes to M:
- All final states are now nonfinal.

Changes to M':
- All final states are now nonfinal.
- All arcs within M' are removed.

No changes to M''.

New arcs added:
1) If $S(q, a) = p$ in M.
 Add $\hat{S}(q', a) = p'$ in \hat{M}.
2) If $S'(q', a) = p'$ in M'.
 Add $\hat{S}(q', X) = p^2$ in \hat{M}.
3) If $S''(q', b) = p'$ in M''.
 Add a new state q'' in \hat{M} and add two arcs $\hat{S}(q', a) = q''p'$, $\hat{S}(q'', b) = p$.
A string starts in M. At some point on an a, it moves to M' without processing the a. If it sees a b next, then it must process an a' and a'', so an extra state is added to see both of those, and move back into M. If it sees an a' next, that would be 2 as, it ignores the a' (aa replaced with λ) and moves to M'. At that point the rest of the string is processed as it would be in M. Exactly one aa is replaced with λ.

(extra page 3) MUST TURN IN!